作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。我们制定教案课件工作计划,就可以在接下来的工作有一个明确目标!有多少经典范文是适合教案课件呢?以下是小编收集整理的“九年级数学下册《反比例函数》知识点人教版”,但愿对您的学习工作带来帮助。
九年级数学下册《反比例函数》知识点人教版
知识点
一、反比例函数的概念
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
反比例函数的图像为双曲线。
二、反比例函数的性质
函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,
1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是:x≠0;
y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
课后习题
1.已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是()
A.3B.-3C.13D.-13
2.对于反比例函数y=3x,下列说法正确的是()
A.图象经过点(1,-3)B.图象在第二、四象限
C.x0时,y随x的增大而增大D.x0时,y随x增大而减小
3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为()
A.0个B.1个C.2个D.不能确定
4.已知反比例函数y=bx(b为常数),当x0时,y随x的增大而增大,则一次函数y=x+b的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
答案:
1.B2.D3.C4.B
每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“初三数学下册《反比例函数》知识点青岛版”,欢迎您阅读和收藏,并分享给身边的朋友!
初三数学下册《反比例函数》知识点青岛版
知识点
形如y=k/x(k为常数且k≠0,x≠0,y≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
当K0时,反比例函数图像经过一,三象限,是减函数(即y随x的增大而减小)
当K0时,反比例函数图像经过二,四象限,是增函数(即y随x的增大而增大)
由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
九年级数学下册《反比例函数》教案
教学目标
知识与技能。
1.从具体情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数概念。
过程与方法。
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式
情感态度与价值观。
结合实例引导学生了解讨论函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类的生活的密切联系及对人类历史发展的作用。
【教学重点】
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数概念。
【教学难点】
领会反比例函数的意义,理解反比例函数概念
教学过程设计:
一、创设情境,提出问题
同学们课余时间和自己的爸爸、妈妈逛过菜市场吧,下面老师带着你们到菜市场再去逛一逛,我们边逛边思考下列问题(大屏幕演示菜市场热闹场面):
问题1说一说你们都喜欢吃什么菜?
问题210元钱分别能买每种蔬菜的重量一样吗?为什么?
问题3设你买的一种蔬菜单价为x,相应的所能购买的重量为y,则y与x满足怎样的关系式呢?
问题4妈妈喜欢吃1.5元/斤的茄子,如果买n斤,所花钱数y应如何表示?
问题5妈妈买菜已经用了25元,还想买5元/斤的鱼a斤,则总的花费y与a的关系式如何表示?
问题6妈妈买完菜准备回家,如果菜市场离家1000米,则妈妈到家所用的时间t与平均速度v之间的关系式如何表示?
[教学形式]:学生独立思考完成问题3—问题6,学习小组成员达成共识后将每题得到的的表达式写在本组答题板上,所有学习小组完成后,各小组之间进行展示、交流
[设计意图]本着课程来源于生活的理念,选择学生所熟悉的菜市场购买蔬菜的场景,提出问题串,这些问题来自于学生生活圈子,符合学生最近发展区的认知规律,使学生感到亲切、自然,同时学生应用生活经验很容易能够解决这些问题.因此最大限度地激发学生的学习兴趣,提高学生思考问题的主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣.让学生真正体会到生活处处皆数学,生活处处有函数.学生在答题板上板演的过程,就是学生主动参与学习的过程,既提高了学生的参与度,又发挥了学生的自由度,变调动学为主动学。无论学习成绩好坏,学生都有自己的思维方式和解决问题的途径,通过板演能把这些情况展示出来,有利于教师对症下药,掌握学生思路上的偏差。反应迅速、解题工整自然会给所有学生留下直观的第一印象,同时,存在问题的学生亦给其他同学留下“误区”的提醒,无论好与坏都起到了榜样示范的作用。
问题7我们利用数学的表达式描述了上述几个生活中的例子,同学们观察这四个表达式,思考下面几个问题:
(1)每个表达式中有几个变量?
(2)(学生通过观察会发现有两个变量)两个变量之间有联系吗?能具体说一说它们之间的联系吗?研究两个变量之间的关系我们通常用的是哪类数学模型?(函数)每个表达式中出现的两个变量是函数关系吗?
(3)这里有你熟悉的函数吗?另外的两个函数认识吗?(通过问题串学生得到四个具体函数,有正比例函数、b不等于0的一次函数和反比例函数,其中有学生学习过的一次函数,即自变量x增大,因变量y增大的类型,另外两个函数学生通过比例关系能够得出随着自变量x增大,因变量y减小.)
问题8从这节课开始我们要研究的一类新的函数——反比例函数(教师板书第五章反比例函数),请同学们回忆八年级上学期我们研究一次函数是从哪几个方面进行的?我们研究反比例函数应该从哪些方面进行呢?(这一章中我们首先研究反比例函数的概念、其次研究它的图象和性质,最后研究它的应用,本节课我们先来研究反比例函数概念.)
二.循序渐进,学习新知
课件展示的两个问题
1我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V时,
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
【设计意图】开头提出一个物理上的问题,学生感到好奇,可以激发学生的学习积极性。为后续学习打下基础。语言表达放映灯光变化的录像,学生感到新鲜,容易让注意力进入课堂
2京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?学生回答,教师板书。
【设计意图】因为数学来源于生活,并服务于生活,因此这三个问题都与实际生活联系比较紧密。另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的问题比较简单,学生可以独立完成,
(二)合作交流、抽象概念
问题12请同学们观察黑板上这4个表达式有什么共同的特点?
[教学形式]:先独立思考,然后学习小组内互相交流想法,组内达成一致后将找到的特点分别写在本组答题板上,所有学习小组完成后,教师将每小组的答题板同时放到黑板上,学生再次将所有同学的智慧进行归纳总结
1.引导学生归纳总结共同特点.
每个表达式中都有2个变量(因变量随自变量变化而变化)1个常数;
表达式右面是分式形式且常数在分子位置、分母位置只有一个自变量;
常数为正数且自变量增加因变量随之减小.(因为都是由实际问题得出的表达式)
[设计意图:学生通过观察、比较、归纳发现四个具体的反比例函数共同特点,顺理成章地从对反比例函数的感性认识上升到理性认识,也自然的运用从特殊到一般的思维方法抽象归纳概括出反比例函数概念.从创设情景的问题串,到学生运用类比、比较等思想方法从多个函数中辨别出正比例函数、一次函数和反比例函数,再到从4个具体的反比函数中归纳出它们共同的特点,抽象出反比例函数的定义的过程,有效地突出重点,使学生领会了反比例函数的意义.]
2.由特例抽象概括定义
问题13这些具有相同特征的函数是一类函数叫做反比例函数,你能根据上述分析的特点类比着正比例函数的定义给反比例函数下一个定义吗?
(数学教学的目的和实质是对学生进行思维能力的培养,以提高他们分析和解决问题的能力。本环节通过对若干实际问题的分析抽象出函数模型,再类比一次函数的定义归纳出反比例函数的定义,渗透了归纳与类比的数学思想)
问题14我们再认真分析反比例函数的定义中,定义中都告诉我们哪些本质的东西?或者说你是怎样理解反比例函数概念的?
教师引导学生归纳总结(剖析概念)
等价形式:;
利用概念出一道有关参数的题目,考察概念掌握的情况,
3完成教材上的做一做
(二)小组竞赛,巩固新知
[活动4]
将学生分成三组,接下来我们三个组的同学来一场智慧大比拼,比赛分三个环节:抢答题、必答题、选答题,总分最多的组获胜,请同学们听好比赛规则……
[设计意图:让学生在“赛中学”、“学中赛”,既巩固了所学的新知,提高了学习效率,又扩大学生的知识面,调动学习的积极性.小组竞赛的学习形式,把学生个体之间的竞争转化为集体之间的对抗,这样的设计既培养了学生集体主义观念,竞争意识,又避免了学生形成狭隘、自私的学习心理.]
1.抢答题:
判断下列函数中y是否为x的反比例函数,若是指出k的值;若不是,请说明理由.
,,,,,.
[学生总结:解决此类判断题的依据是反比例函数的定义,体会数学定义的形式化思想;其中第小题适时向学生渗透整体的数学思想]
[设计意图:进一步巩固反比例函数的概念,区分反比例函数与其它函数的不同之处.]
2.必答题:
一组:一个游泳池蓄水60立方米,设放完池中的水所需时间为y小时,而每小时放水量为x立方米,写出y与x之间的函数关系式,并指出y是x的什么函数?
二组:北京市的总面积为平方千米,写出人均占有土地面积s(平方千米/人)与全市总人口n(人)的函数关系式,并指出s是n的什么函数?
三组:一个直角三角形两直角边长分别为x和y,其面积为2,请写出y与x之间的函数关系式,并指出y是x的什么函数?
[设计意图:突出反比例函数与现实世界的密切的联系,加深理解反比例函数是刻画现实世界的重要数学模型.一方面使学生感受现实世界反比例函数大量存在,另一方面体会用反比例函数的知识可以分析和解决实际问题,渗透数学函数建模的思想.]
四、课时小结、总结收获
(1)对于这节课大家还有什么疑问吗?
(2)通过这节课学习,同学们有什么收获?
[设计意图:在独立思考和合作交流中引导学生梳理本节课在知识和数学思想方法方面的收获,形成知识网络,提升对数学思想方法的理性认识.在总结的同时让学生体验收获知识的快乐,培养敢于展示自我,敢说、敢问、自信的学习品质.]
结束语:本节课我们从实际问题中抽象出反比例函数,要进一步研究反比例函数的性质我们还要借助于图像,这也是下节课我们即将要学习的内容.同学们,数学是自然科学的灵魂,函数又是数学的皇后,是描述现实世界变化规律的重要数学模型,它以简洁而著称,犹如音乐,与物理化学等学科共舞.老师希望同学们能分清每个函数的特征,并灵活运用它们解决你身边的问题.
五、布置作业,深化知识.(书后练习题)
文章来源:http://m.jab88.com/j/59627.html
更多