88教案网

八年级数学竞赛例题乘法公式专题讲解

老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“八年级数学竞赛例题乘法公式专题讲解”,仅供您在工作和学习中参考。

专题02乘法公式

阅读与思考
乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:
1.熟悉每个公式的结构特征;
2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;
3.逆用即将公式反过来逆向使用;
4.变用即能将公式变换形式使用;
5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.

例题与求解
【例1】1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.
(全国初中数字联赛试题)
解题思路:因,而的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.

【例2】(1)已知满足等式,则的大小关系是()
A.B.C.D.
(山西省太原市竞赛试题)
(2)已知满足,则的值等于()
A.2B.3C.4D.5
(河北省竞赛试题)
解题思路:对于(1),作差比较的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.

【例3】计算下列各题:
(1);(天津市竞赛试题)
(2);(“希望杯”邀请赛试题)
(3).
解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.

【例4】设,求的值.(西安市竞赛试题)
解题思路:由常用公式不能直接求出的结构,必须把表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.

【例5】观察:
(1)请写出一个具有普遍性的结论,并给出证明;
(2)根据(1),计算的结果(用一个最简式子表示).
(黄冈市竞赛试题)
解题思路:从特殊情况入手,观察找规律.

【例6】设满足求:
(1)的值;
(2)的值.
(江苏省竞赛试题)
解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.

能力训练
A级
1.已知是一个多项式的平方,则.(广东省中考试题)
2.数能被30以内的两位偶数整除的是.
3.已知那么.
(天津市竞赛试题)
4.若则.
5.已知满足则的值为.
(河北省竞赛试题)
6.若满足则等于.
7.等于()
A.B.C.D.
8.若,则的值是()
A.正数B.负数C.非负数D.可正可负
9.若则的值是()
A.4B.19922C.21992D.41992
(“希望杯”邀请赛试题)
10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?(“CASIO”杯全国初中数学竞赛试题)

11.设,证明:是37的倍数.(“希望杯”邀请赛试题)

12.观察下面各式的规律:
写出第2003行和第行的式子,并证明你的结论.

B级
1.展开式中的系数,当1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出的值为.(《学习报》公开赛试题)
2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,则的值为.
(天津市竞赛试题)
3.已知满足等式则.
4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为.
(全国初中数学联赛试题)
5.已知,则多项式的值为()
A.0B.1C.2D.3
6.把2009表示成两个整数的平方差的形式,则不同的表示法有()
A.16种B.14种C.12种D.10种
(北京市竞赛试题)
7.若正整数满足,则这样的正整数对的个数是()
A.1B.2C.3D.4
(山东省竞赛试题)
8.已知,则的值是()
A.3B.9C.27D.81
(“希望杯”邀请赛试题)
9.满足等式的整数对是否存在?若存在,求出的值;若不存在,说明理由.
10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.
(天津市竞赛试题)

11.若,且,求证:.

12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如
因此4,12,20这三个数都是神秘数.
(1)28和2012这两个数是神秘数吗?为什么?
(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?(浙江省中考试题)

相关推荐

八年级数学竞赛例题整式的乘除专题讲解


专题01整式的乘除

阅读与思考
指数运算律是整式乘除的基础,有以下5个公式:,,,,,.
学习指数运算律应注意:
1.运算律成立的条件;
2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;
3.运算律的正向运用、逆向运用、综合运用.
多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:
1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;
2.确定商式,竖式演算式,同类项上下对齐;
3.演算到余式为零或余式的次数小于除式的次数为止.
例题与求解
【例1】(1)若为不等式的解,则的最小正整数的值为.
(“华罗庚杯”香港中学竞赛试题)
(2)已知,那么.(“华杯赛”试题)
(3)把展开后得,则.(“祖冲之杯”邀请赛试题)
(4)若则
.(创新杯训练试题)
解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.

【例2】已知,,则等于()
A.2B.1C.D.(“希望杯”邀请赛试题)
解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.

【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)
解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.

【例4】已知多项式,求的值.
解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.

【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.
解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.

【例6】已知多项式能被整除,求的值.(北京市竞赛试题)
解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.
能力训练
A级
1.(1).(福州市中考试题)
(2)若,则.(广东省竞赛试题)
2.若,则.
3.满足的的最小正整数为.(武汉市选拔赛试题)
4.都是正数,且,则中,最大的一个是.
(“英才杯”竞赛试题)
5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)
6.已知,则的大小关系是()
A.B.C.D.
7.已知,那么从小到大的顺序是()
A.B.C.D.
(北京市“迎春杯”竞赛试题)
8.若,其中为整数,则与的数量关系为()
A.B.C.D.
(江苏省竞赛试题)

9.已知则的关系是()
A.B.C.D.
(河北省竞赛试题)
10.化简得()
A.B.C.D.
11.已知,
试求的值.

12.已知.试确定的值.

13.已知除以,其余数较被除所得的余数少2,求的值.
(香港中学竞赛试题)

B级
1.已知则=.
2.(1)计算:=.(第16届“希望杯”邀请竞赛试题)
(2)如果,那么.
(青少年数学周“宗沪杯”竞赛试题)
3.(1)与的大小关系是(填“>”“<”“=”).
(2)与的大小关系是:(填“>”“<”“=”).
4.如果则=.(“希望杯”邀请赛试题)
5.已知,则.
(“五羊杯”竞赛试题)
6.已知均为不等于1的正数,且则的值为()
A.3B.2C.1D.
(“CASIO杯”武汉市竞赛试题)
7.若,则的值是()
A.1B.0C.—1D.2
8.如果有两个因式和,则()
A.7B.8C.15D.21
(奥赛培训试题)
9.已知均为正数,又,,则与的大小关系是()
A.B.C.D.关系不确定
10.满足的整数有()个
A.1B.2C.3D.4

11.设满足求的值.

12.若为整数,且,,求的值.
(美国犹他州竞赛试题)

13.已知为有理数,且多项式能够被整除.
(1)求的值;
(2)求的值;
(3)若为整数,且.试比较的大小.
(四川省竞赛试题)

八年级数学竞赛例题分式方程专题讲解


专题08分式方程

阅读与思考
分母含有未知数的方程叫分式方程.解分式方程的主要思路是去分母,把分式方程化为整式方程,常用的方法有直接去分母、换元法等.
在解分式方程中,有可能产生增根.尽管增根必须舍去,但有时却要利用增根,挖掘隐含条件.

例题与求解
【例1】若关于的方程=-1的解为正数,则的取值范围是______.
(黄冈市竞赛试题)
解题思路:化分式方程为整式方程,注意增根的隐含制约.

【例2】已知,其中A,B,C为常数.求A+B+C的值.
(“五羊杯”竞赛试题)
解题思路:将右边通分,比较分子,建立A,B,C的等式.

【例3】解下列方程:
(1);(“五羊杯”竞赛试题)
(2);(河南省竞赛试题)
(3)+=3.(加拿大数学奥林匹克竞赛试题)
解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.

【例4】(1)方程的解是___________.(江苏省竞赛试题)

(2)方程的解是________.
(“希望杯”邀请赛试题)
解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.

【例5】若关于的方程只有一个解,试求的值与方程的解.
(江苏省竞赛试题)
解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.
【例6】求方程的正整数解.(“希望杯”竞赛试题)
解题思路:易知都大于1,不妨设1<≤≤,则,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.

能力训练
A级
1.若关于x的方程有增根,则的值为________.(重庆市中考试题)
2.用换元法解分式方程时,如果设=,并将原方程化为关于的整式方程,那么这个整式方程是___________.(上海市中考试题)
3.方程的解为__________.(天津市中考试题)
4.两个关于的方程与有一个解相同,则=_______.
(呼和浩特市中考试题)
5.已知方程的两根分别为,,则方程的根是().
A.,B.,C.,D.,
(辽宁省中考试题)
6.关于的方程的解是正数,则的取值范围是()
A.>-1B.>-1且≠0
C.<-1D.<-l且≠-2
(孝感市中考试题)
7.关于的方程的两个解是1=,2=,则关于的方程的两个解是().
A.,B.-1,C.,D.,
8.解下列方程:
(1);(苏州市中考试题)
(2).(盐城市中考试题)

9.已知.求10+5+的值.

10.若关于的方程只有一个解(相等的两根算作一个),求的值.
(黄冈市竞赛试题)

11.已知关于的方程2+2+,其中为实数.当为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.
(聊城市中考试题)

12.若关于的方程无解,求的值.
(“希望杯”邀请赛试题)

B级
1.方程的解是__________.
(“祖冲之杯”邀请赛试题)
2.方程的解为__________.
3.分式方程有增根,则的值为_________.
4.若关于的分式方程=-1的解是正数,则的取值范围是______.
(黑龙江省竞赛试题)
5.(1)若关于x的方程无解,则=__________.(沈阳市中考试题)
(2)解分式方程会产生增根,则=______.(“希望杯”邀请赛试题)
6.方程的解的个数为().
A.4个B.6个C.2个D.3个
7.关于的方程的解是负数,则的取值范围是().
A.<lB.<1且≠0C.≤1D.≤1且≠0
(山西省竞赛试题)
8.某工程,甲队独做所需天数是乙、丙两队合做所需天数的倍,乙队独做所需天数是甲、丙两队合做所需天数的倍,丙队独做所需天数是甲、乙两队合做所需天数的倍,则的值是().
A.1B.2C.3D.4
(江苏省竞赛试题)
9.已知关于的方程(2-1)有实数根.
(1)求的取值范围;
(2)若原方程的两个实数根为1,2,且,求的值.
(TI杯全国初中数学竞赛试颞)
10.求方程-++2006=0的正整数解.
(江苏省竞赛试题)

11.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?(齐齐哈尔市中考试题)

八年级数学竞赛例题心中有数专题讲解


专题12心中有数

阅读与思考
现代社会是一个数字化的社会,我们每个人每天都要和各种各样的数字打交道,从国民生产总值、人均消费水平、人口自然增长率、股市综合指数,到家庭的水、电、煤气的月平均数,学生的身高、体重、考试成绩,都与数字有关.“用数据说话”已成为从事许多工作的基本要求,能用数据说话的人必须具备一定的统计知识.
对数据进行收集、整理、计算、分析,并在此基础上作出科学的推断,这就是数据分析,是统计学研究的基本范畴和方法,收集数据、量化处理的目的在于运用统计结果进行判断和决策.
统计学的基本思想就是用样本对总体进行估计、推理,即用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律,是从局部看整体的思想方法.

例题与求解
【例l】在对某班的一次数学测试成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分).请观察图形,并回答下列问题:
(1)该班有________名学生.
(2)69.5~79.5这一组的频数是_________,频率是_________.
(3)请估算该班这次测验的平均成绩.
(黄冈市中考试题)
解题思路:从频率直方图中捕捉相关信息.

【例2】某学生通过先求与的平均值,再求得数与的平均值来计算,,三个数的平均数.当时,这个学生的最后得数是()
A.正确的B.总小于AC.总大于A
D.有时小于A,有时等于AE.有时大于A,有时等于A
(第二届美国中学生邀请赛试题)
解题思路:按不同方法计算平均值,作差比较它们的大小.

【例3】某校九年级学生共有900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:
甲:将全体测试数据分成6组绘成直方图(如图);
乙:跳绳次数不少于105次的同学占96%;
丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;
丁:第②、③、④组的频数之比为4:17:15.
根据这四名同学提供的材料,请解答如下问题:
(1)这次跳绳测试共抽取多少名学生?各组有多少人?
(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少.
(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.
(安徽省中考试题)
解题思路:本题考查了频率、频数的概念和对频数直方图的认识,要理解各组频率之和为1,各组频数之和等于总数,掌握好这些知识点,自然可以解决问题.
【例4】编号为1到25的25个弹珠被分放在两个篮子A和B中,15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?
(第十六届江苏竞赛试题)
解题思路:用字母分别表示篮子A,B中的弹珠数及相应的平均数,运用方程(组)来求解.

【例5】某次数学竞赛共有15道题,下表是对于做对n(n=0,1,2,…,15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了多少人?
问这个表至少统计了多少人?
n0123…12131415
做对n道题的人数781021…15631
(全国初中数学联赛试题)
解题思路:从统计表中可知做对0~3道题、12~15道题的相应总人数和总题数,结合已知条件,运用方程(组)、不等式(组)等知识方法求解.

【例6】一次中考模拟考试中,两班学生数学成绩统计如下:
分数5060708090100
人数三(3)251013146
三(4)441621212
请你根据学过的统计学知识,判断这两个班在这次模拟考试中的数学成绩谁优谁次?并说明理由.
解题思路:这是一道开放性试题,看考虑问题是从哪一个侧面入手.本题因未说明从何种角度来考虑,故我们应多想几套方案.

能力训练
A级

1.大连是一个严重缺水的城市,为鼓励市民珍惜每一滴水,某居委会表彰了100个节约用水模范户,5月份这100户节约用水的情况如下表:
每户节水量(单位:吨)11.21.5
节水户数523018
那么,5月份这100户平均节约用水的吨数为(精确到0.01吨)_________吨.
(大连市中考试题)
2.某班全体学生进行了一次篮球投篮练习,每人投球10个,每投进一球得1分.得分的部分情况如下表所示:
得分012…8910
人数754…341

已知该班学生中,至少得3分的人的平均得分为6分,得分不到8分的人的平均得分为3分,那么该班

学生有___________人.
(江苏竞赛试题)
3.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:78686591074
乙:9578768677
所以应确定_______去参加射击比赛.
4.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,,6,4,若这组数据
的平均数是5,则这组数据的中位数是_________件.
(包头市中考试题)
5.如果一组数据,,,,的平均数是,则另一组数据,,,,的平均数是()
A.B.C.D.
(天津市中考试题)
6.10名工人某天生产同一零件,生产的件数是45,50,75,50,20,30,50,80,20,30.设这些零件数的平均数为,众数为,中位数为,那么()
A.B.C.D.
(宁夏中考试题)
7.为了了解某区九年级7000名学生,从中抽查了500名学生的体重.就这个问题而言,下列说法正确的
是()
A.7000名学生是总体B.每个学生是个体
C.500名学生是样本D.样本容量为500
8.已知1~99中有49个偶数,从这49个偶数中取出48个数,其平均数为,则未取的数字是()
A.20B.28C.72D.78
(台湾省中考试题)
9.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示:
(1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
(安徽省中考试题)

10.某校要从九年级(1)班和(2)班中各选取10名女同学组成礼仪队,选取的女生身高如下:(单位:厘米)
(1)班:168167170165168166171168167170
(2)班:165167169170165168170171168167
(1)补充完成下面的统计分析表
班级平均数方差中位数极差
(1)班1681686
(2)班1683.8
(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.
(2013宁夏回族自治区中考试题)

11.为估计一次性木质筷子的用量,2011年从某县共600家高、中、低档饭店中抽取10家作样本.这些饭店每天消耗的一次性筷子盒数分别为:
0.6,3.7,2.2,1.5,2.8,1.7,1.2,2.1,3.2,1.0.
(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子(每年按350个营业日计算);
(2)2013年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店每个饭店平均每天使用一次性筷子2.42盒.求该县2012年、2013年这两年一次性木质筷子用量平均每年增长的百分率(2012年该县饭店数、全年营业天数均与2011年相同);
(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07,求该县2013年使用一次性筷子的木材可以生产多少套学生桌椅?
计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5,所用木材的密度为0.5×103;
(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来.

12.由9位裁判给参加健美比赛的12名运动员评分.每位裁判对他认为的第1名运动员给1分,第2名运动员给2分,…,第12名运动员给12分,最后评分结果显示:每个运动员所得的9个分数中高、低之差都不大于3.设各运动员的得分总和分别为,,…,,且,求的最大值.
(第十九届江苏省竞赛试题)
B级

1.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:
A、测量少体校中180名男子篮球、排球队员的身高;
B、查阅有关外地180名男生身高的统计资料;
C、在本市的市区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.问:
(1)为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?
答:选________;理由:______________________________________________________________
(2)下表中的数据是使用了某种调查方法获得的:
初中男生身高情况抽样调查表

七年级八年级九年级总计
(频数)
143~1531230
153~1631896
163~173243339
173~18361512
183~193003
(注:每组可含最低值,不含最高值)
①根据表中的数据填写表中的空格;
②根据填写的数据绘制频数分布直方图.
(上海市中考试题)
2.为了检查一批产品的合格率,从中检查了100个产品,测得数据如下:
数据

个数51015202015105
其中,,,…,是从小到大排列的两位数,且每个两位数与它的反序数(12的反序数是21)之和都为完全平方数,样本的方差是________.
(辽宁锦州市竞赛试题)

3.五名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为米,后两名的平均身高为米,前两名的平均身高为,后三名的平均身高为,则与比较()
A.大B.大C.两者相等D.无法确定
(“五羊杯”邀请赛试题)
4.已知数据,,的平均数为,,,的平均数为,则数据,,的平均数为()
A.B.C.D.
(全国初中数学竞赛试题)
5.小林拟将1,2,…,这个数输入电脑,求平均数.当他认为输入完毕时,电脑显示只输入个数,平均数为,假设这个数输入无误,则漏输入的一个数是()
A.10B.53C.56D.67
(江苏省竞赛试题)
6.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上.设该矩形的长QM=mm,宽MN=mm.
(1)求证:;
(2)当矩形PQMN的面积最大时,它的长和宽是关于的一元二次方程的两个根,而、的值又恰好分别是,10,12,13,这5个数据的众数与平均数,试求与的值.
(广西壮族自治区中考试题)

7.某班参加一次智力竞赛,共,,三道题,每题或者得满分或者得0分.其中题满分20分,、题满分都为25分,竞赛结果:每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题的人数与答对题的人数之和为29;答对题的人数与答对题的人数之和为25;答对题的人数与答对题的人数之和为20,问这个班的平均成绩是多少.
(全国初中数学联赛试题)

8.元旦联欢会某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小敏测量了部分彩纸链的长度,她得到的数据如下表:
纸环数(个)
1234…
彩纸链长度(cm)
19365370…
(1)把上表中、的各组对应值作为点的坐标,在如图所示的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;
(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?
(济南市中考试题)
9.某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).
(1)如果他要打破记录,第7次射击不能少于多少环?
(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?
(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?
(山东省中考试题)

10.“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:
等级成绩(用表示)
频数频率
A
0.08
B
35

C
110.22
合计
501
请根据上表提供的信息,解答下列问题:
(1)表中的的值为________,的值为_______;
(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.
(2013年成都市中考试题)

文章来源:http://m.jab88.com/j/57097.html

更多

猜你喜欢

更多

最新更新

更多