解直角三角形
【知识与技能】
1.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.
2.培养学生将实际问题抽象成数学模型并进行解释与应用的能力.
【过程与方法】
通过本章的学习培养同学们的分析、研究问题和解决问题的能力.
【情感态度】
在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.
【教学重点】
理解仰角和俯角的概念.
【教学难点】
能解与直角三角形有关的实际问题.
一、情境导入,初步认识
如图,为了测量旗杆的高度BC,小明站在离旗杆10米的A处,用高1.50米的测角仪DA测得旗杆顶端C的仰角α=52°,然后他很快就算出旗杆BC的高度了.(精确到0.1米)
你知道小明是怎样算出的吗?
二、思考探究,获取新知
想要解决刚才的问题,我们先来了解仰角、俯角的概念.
【教学说明】学生观察、分析、归纳仰角、俯角的概念.
现在我们可以来看一看小明是怎样算出来的.
【分析】在Rt△CDE中,已知一角和一边,利用解直角三角形的知识即可求出CE的长,从而求出CB的长.
解:在Rt△CDE中,∵CE=DEtanα=ABtanα=10×tan52°≈12.80,
∴BC=BE+CE=DA+CE≈12.80+1.50=14.3(米).
答:旗杆的高度约为14.3米.
例如图,两建筑物的水平距离为32.6m,从点A测得点D的俯角α为35°12′,测得点C的俯角β为43°24′,求这两个建筑物的高.(精确到0.1m)
解:过点D作DE⊥AB于点E,则∠ACB=β=43°24′,∠ADE=35°12′,DE=BC=32.6m.
在Rt△ABC中,∵tan∠ACB=,
∴AB=BCtan∠ACB=32.6×tan43°24′≈30.83(m).
在Rt△ADE中,∵tan∠ADE=,
∴AE=DEtan∠ADE=32.6×tan35°12′≈23.00(m).
∴DC=BE=AB-AE=30.83-23.00≈7.8(m)
答:两个建筑物的高分别约为30.8m,7.8m.
【教学说明】关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.
三、运用新知,深化理解
1.如图,一只运载火箭从地面L处发射,当卫星达到A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°,1s后火箭到达B点,此时测得BR的距离是6.13km,仰角为45.54°,这个火箭从A到B的平均速度是多少?(精确到0.01km/s)
2.如图所示,当小华站在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)
【答案】1.0.28km/s2.1.4米
四、师生互动,课堂小结
1.这节课你学到了什么?你有何体会?
2.这节课你还存在什么问题?
1.布置作业:从教材相应练习和“习题24.4”中选取.
2.完成练习册中本课时练习.
本节课从学生接受知识的最近发展区出发,创设了学生最熟悉的旗杆问题情境,引导学生发现问题、分析问题.在探索活动中,学生自主探索知识,逐步把生活实际问题抽象成数学模型并进行解释与应用的学习方法,养成交流与合作的良好习惯.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学数学的信心.
每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“八年级数学上册《直角三角形》教案”,欢迎您阅读和收藏,并分享给身边的朋友!
八年级数学上册《直角三角形》教案
〖教学目标〗
◆1、体验直角三角形应用的广泛性,进一步认识直角三角形.
◆2、学会用符号和字母表示直角三角形.
◆3、经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.
◆4、掌握“直角三角形斜边上中线等于斜边的一半”性质,并能灵活应用.
〖教学重点与难点〗
◆教学重点:“直角三角形的两个锐角互余”的性质及其应用在以后的几何学习中将得到广泛的应用,是本节教学的重点.
◆教学难点:“直角三角形斜边上中线等于斜边的一半”性质的推导过程。
〖教学过程〗
一、复习引入:
1.三角形分类.
2.小学已学习的直角三角形知识。(直角三角形及相关概念-直角边、斜边等)
学生口答后引入课题。(板书课题:2.6直角三角形(1))
二、新课教学:
1.由复习得出直角三角形的概念。
板书:有一个角是直角的三角形叫做直角三角形.
直角三角形表示方法:Rt⊿.
由书本图例,让学生体验直角三角形应用的广泛性。(让学生举例说明直角三角形应用)
2.合作学习:
(1)直角三角形的内角有什么特点?
学生讨论后,小结得出:(板书)直角三角形的两个锐角互余.
(2)巩固练习
(3)直角三角形斜边上的中线等于斜边的一半
完成课本第68页“做一做”第2题。
教师提问:让学生猜测直角三角形斜边上的中线与斜边一半的大小关系。
教师板书性质。
例1如图,一名滑雪运动员沿着倾斜角为30°的斜边,中A滑行至B。已知AB=200m,问这名滑雪运动员的高度下降了多少m?
30°
A
B
C
教师先引导学生理解题意后分析:书上分析。
教师板演解题过程:
解:如图作Rt△ABC的斜边上的中线CD,则CD=AD=1/2AB=1/2×200=100(在直角三角形中,斜边上的中线等于斜边的一半)
A
∵∠B=30°(已知)
D
∴∠A=90°-∠B=90°-30°
30°
C
B
(直角三角形两锐角互余)
∴∠DCA=∠A=60°(等边对等角)
∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形内角和等于180°)
∴△ABC是等边三角形(三个角都是60°的三角形是等边三角形)
∴AC=AD=100
答:这名滑雪运动员的高度下降了100m。
讲完后教师归纳一下“在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半”让学生注意书写的规范。
三、练习:1、在Rt△ABC中,CD是斜边AB上的中线,若CD=3.5厘米,则AB=__厘米
2、已知△ABC中,∠A=90°,
BC=20cm,则BC边上的中线为
见书本第70页第6题,以及变式1:连结CD,取CD的中点N,连结EN,你能判断EN与CD的位置关系吗?
变式2:三角形ABD与三角形ABC在AB的异侧.
四、总结回顾:
1、直角三角形的概念及其应用的广泛性.
2、直角三角形的两个锐角互余,直角三角形斜边上中线等于斜边的一半。
3、注重知识间的相互联系,学会通过比较理解掌握相应的几何知识。
五、作业:
1.作业本2.6(1)2.知识梳理
作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《解直角三角形》,供大家参考,希望能帮助到有需要的朋友。
21.4解直角三角形文章来源:http://m.jab88.com/j/57095.html
更多