浙教版八年级数学下册《一元二次方程的解法》教学设计
课题
§2.2一元二次方程的解法(4)
课时
教学
目标
1、理解一元二次方程求根公式的推导过程.
2、会用公式法解一元二次方程.
教学
设想
重点:用公式法解一元二次方程.
难点:一元二次方程的求根公式的推导过程比较复杂,涉及多方面的知识和能力,是本节的难点.
教学程序与策略
一、引入新课
用配方法解下列一元二次方程
完善“配方法”解方程的基本步骤
★一除、二移、三配、四开平方、五解.
二、新课学习
1.做一做:
你能用配方法解一般形式的一元二次方程(a≠0)吗?
处理:给学生充足的时间做一做,配方法掌握好的学生最后求解的结果可能不会考虑到的条件,也可能答案不够简练;然后教师引导学生再去探索.
思考:,方程有实数解吗?
一般地,对于一元二次方程(a≠0),如果,那么方程的两个根为这个公式就叫做一元二次方程的求根公式.利用求根公式,由一元二次方程的系数a,b,c,直接求得一元二次方程的根.这种解一元二次方程的方法叫做公式法.(它是解一元二次方程的一把万能钥匙)
2.现学现用:填空(用公式法解方程)课内练习
说明:利用求根公式,就是代入公式求值,关键是确定a,b,c的值,目的就是应用求根公式时,应将方程化成一般式.进而引导学生总结出公式法解一元二次方程的基本步骤
(1)把方程化成一般形式,并写出a,b,c的值.(2)求出的值.
教学程序与策略
(3)代入求根公式:(4)写出方程的解
3.试一试:用公式法解下列方程
;;;;
让学生独立完成,师生共同评价,由(3),(5)说明
方程根的情况:
4.问:解一元二次方程的方法都有哪些?
说明:至于选择哪一个方法解一元二次方程,看你觉得哪个方法好用或方便就用哪个.
选择适当的方法解下列方程
;;;
;
(5)先化成一般式,再用公式法.
三、课堂小结
请谈谈你的收获!
1.一元二次方程的求根公式.(公式成立的条件)
2.公式法解一元二次方程的基本步骤
四、布置作业
P35-36课本作业题A组必做,B组选做
作业本
每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“一元二次方程的应用学案”,欢迎您阅读和收藏,并分享给身边的朋友!
学习目标:1.能根据题意找出正确的等量关系.
2.能正确的列出一元二次方程解决实际问题.
学习过程:
前面我们学习过了一元一次方程、分式方程,并能用它们来解决现实生活与生产中的许多问题,同样,我们也可以用一元二次方程来解决一些问题。
想一想,列方程解应用题的关键是什么?
一.自主学习
例1.如图,有一块长40cm、宽30cm的矩形铁片,在它的四角各截去一个全等的小正方形,然后拼成一个无盖的长方体盒子.如果这个盒子的底面积等于原来矩形铁片面积的一半,那么盒子的高是多少?
分析:这个问题中的等量关系是:
解:
例2.如图,MN是一面长10m的墙,要用长24m的篱笆,围成一个一面是墙、中间隔着一道篱笆的矩形花圃ABCD.已知花圃的设计面积为45平方米,花圃的宽度应当是多少?
解:设矩形花圃ABCD的宽为x(m),那么长____m.
根据问题中给出的等量关系,得到方程_________________________________.
解这个方程,得=,=
根据题意,舍去_________________.
所以,花圃的宽是________m.
二.对应练习
1.从一块正方形木板上锯掉2cm宽的矩形木条,剩余矩形木板的面积是48.求原正方形木板的面积.
2.有一块矩形的草坪,长比宽多4m.草坪四周有一条宽2m的小路环绕,已知小路的面积与草坪的面积相等地,求草坪的长和宽.
三.当堂检测
1.两个数的和是20,积是51,求这两个数.
2.如图,道路AB与BC分别是东西方向和南北方向,AB=1000m.某日晨练,小莹从点A出发,以每分钟150m的速度向东跑;同时小亮从点B出发,
以每分钟200m的速度向北跑,二人出发后经过几分钟,
他们之间的直线距离仍然是1000?
文章来源:http://m.jab88.com/j/57073.html
更多