88教案网

八年级数学上册知识点归纳:分式方程的应用

作为老师的任务写教案课件是少不了的,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,才能更好的在接下来的工作轻装上阵!你们清楚教案课件的范文有哪些呢?以下是小编为大家收集的“八年级数学上册知识点归纳:分式方程的应用”仅供参考,希望能为您提供参考!

八年级数学上册知识点归纳:分式方程的应用

分式方程:
含分式,并且分母中含未知数的方程叫做分式方程。
分式的混合运算:
分式的混合运算关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。
任何一个不等于零的数的零次幂等于1,即a^0=1(a不等于0);当n为正整数时,a^-n=1/(a^n)(a不等于0)注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数
分式的加减法则:
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)
法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd(ad±bc)
注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;
(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;
(3)运算时顺序合理、步骤清晰;
(4)运算结果必须化成最简分式或整式。

1、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?
2、某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?
3、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
4、陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?
5、甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?
6、市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原计划提前5天完成。求该公司完成这项工程实际的天数。8、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
9、A,B两地相距135千米,有大,小两辆汽车同时从A地开往B地,,大汽车比小汽车晚到4小时30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
12、A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
13、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。问原计划这项工程用多少个月。
14、.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?
1
16、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?
17、甲乙两人分别从A、B两地同时出发,相向而行。甲走8米后两人第一次相遇,然后甲继续向前到B立即返回,乙继续向前走到A立即返回,两人在距离B地6米处第二次相遇,求A、B两地的距离。
18、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
20、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
21、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
22、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
23、甲有25元,这些钱是甲、乙两人总数的20%。乙有多少钱?
24、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?
25、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。26、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。
27、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速度各是多少?
28、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
29、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
32、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?
33、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?
34、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?
35、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。
36、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
37、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。
38、某商品每件售价15元,可获利25%,求这种商品的成本价。
39、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?
40、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度m.Jab88.com

相关推荐

八年级数学上册知识点:分式方程的应用冀教版


教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“八年级数学上册知识点:分式方程的应用冀教版”,希望能为您提供更多的参考。

八年级数学上册知识点:分式方程的应用冀教版

知识点

含义:分母中含有未知数的方程叫做分式方程。

分式方程的解法:

①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};

②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。

课后练习

1)66x+17y=3967

25x+y=1200

答案:x=48y=47

(2)18x+23y=2303

74x-y=1998

答案:x=27y=79

(3)44x+90y=7796

44x+y=3476

答案:x=79y=48

(4)76x-66y=4082

30x-y=2940

答案:x=98y=51

(5)67x+54y=8546

71x-y=5680

答案:x=80y=59

(6)42x-95y=-1410

21x-y=1575

答案:x=75y=48

(7)47x-40y=853

34x-y=2006

答案:x=59y=48

(8)19x-32y=-1786

75x+y=4950

答案:x=66y=95

(9)97x+24y=7202

58x-y=2900

答案:x=50y=98

(10)42x+85y=6362

63x-y=1638

答案:x=26y=62

八年级数学上册知识点归纳:分式的加减


八年级数学上册知识点归纳:分式的加减

一、约分与通分:
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
3.求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
二、分式的运算:
1.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
【分式的运算考点分析】
分式的运算通常是综合考查分式的加减、乘除、约分及分解因式等知识,是中考的重点。特别是化简求值已经成近两年中考的热点。题型既有选择、填空题,也有计算题。
【分式的运算知识点误区】
(1)互为相反数的因式约分时漏掉负号;
(2)通分时漏乘而出错;
(3)把通分与去分母混淆,本是通分,却把分式中的分母丢掉;
(4)计算顺序搞乱而出错。
【典型例题】

分式的四则运算
1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/c±b/c=(a±b)/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/b±c/d=(ad±cb)/bd
3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b*c/d=ac/bd
4.分式的除法法则:
(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c
不论什么样的计算,其过程都是需要大家耐心和细心的。

2017年八年级数学上15.3分式方程第2课时分式方程的实际应用学案


一般给学生们上课之前,老师就早早地准备好了教案课件,大家在用心的考虑自己的教案课件。只有写好教案课件计划,才能促进我们的工作进一步发展!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“2017年八年级数学上15.3分式方程第2课时分式方程的实际应用学案”,但愿对您的学习工作带来帮助。

第2课时分式方程的实际应用
能将实际问题中的相等关系用分式方程表示,并解决实际问题.
阅读教材P152~153,完成预习内容.
知识探究
1.列方程解应用题的一般步骤是
(1)________________;
(2)________________;
(3)________________;
(4)________________;
(5)________________.
2.类比一般方程,列分式方程解应用题的一般步骤是
(1)________________;
(2)________________;
(3)________________;
(4)________________;
(5)________________;
(6)________________.
自学反馈
重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半.后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半.乙型挖土机单独挖这块地需要几天?
甲型挖土机4天完成了一半,那么甲型挖土机每天挖________________,如果设乙型挖土机单独挖这块地需要x天,那么一天挖________;两台挖土机一天共挖__________;两台一天完成另一半.所以方程为________________;解得x=________.经检验:x=________是原分式方程的解.
答:乙单独挖需________天.
认真分析题意.根据等量关系列方程.
1.甲乙两人分别从相距36千米的A,B两地相向而行,甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样两人恰好在AB中点处相遇.已知甲比乙每小时多走0.5千米,求二人的速度各是多少?
分析:
路程速度时间
甲18+1×2x+0.518+1×2x+0.5

乙18x18x

等量关系:t甲=t乙.
解:设乙的速度为x千米/小时,则甲的速度为(x+0.5)千米/小时.
根据题意,列方程得
18+1×2x+0.5=18x.
解得x=4.5.
检验:当x=4.5时,x(x+0.5)≠0.所以,x=4.5是原方程的解.则x+0.5=5.
答:甲的速度为5千米/小时,乙的速度为4.5千米/小时.
等量关系是时间相等,那么就要找到相等时间里每个人所走的路程,甲的路程比乙的路程多两个1千米.
2.A、B两地相距135千米,有大、小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2∶5,求两辆汽车的速度.
解:设大汽车的速度为2x千米/小时,小汽车的速度为5x千米/小时.
根据题意,列方程得135-2x×52x=135-12×(5x)5x.
解得x=9.
检验:当x=9时,10x≠0.所以,x=9是原方程的解.
则2x=18,5x=45.
答:大汽车的速度是18千米/小时,小汽车的速度是45千米/小时.
等量关系是大汽车5小时后剩下路程所走的时间,等于小汽车去掉30分钟路程所用的时间.
3.一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?
解:设规定日期是x天,则甲队独做需x天,乙队独做需(x+3)天,
根据题意,列方程得2x+xx+3=1.
解得x=6.
检验:当x=6时,x(x+3)≠0.所以,x=6是原方程的解.
答:规定日期是6天.
课堂小结
1.列分式方程解应用题,应该注意解题的六个步骤.
2.列方程的关键是要在准确设元(可直接设,也可间接设)的前提下找出等量关系.
3.解题过程注意画图或列表帮助分析题意找等量关系.
4.注意不要遗漏检验和作答.
【预习导学】
知识探究
1.(1)审题设未知数(2)找等量关系列方程(3)解方程(4)检验根是否符合实际意义(5)作答2.(1)审题设未知数(2)找等量关系列方程(3)去分母化分式方程为整式方程(4)解整式方程(5)检验根是否符合实际意义(6)作答
自学反馈
12÷4=181x18+1x18+1x=128383

文章来源:http://m.jab88.com/j/56755.html

更多

最新更新

更多