教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“八年级数学上册知识点:分式方程的应用冀教版”,希望能为您提供更多的参考。
八年级数学上册知识点:分式方程的应用冀教版
知识点
含义:分母中含有未知数的方程叫做分式方程。
分式方程的解法:
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};
②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;
③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。
课后练习
1)66x+17y=3967
25x+y=1200
答案:x=48y=47
(2)18x+23y=2303
74x-y=1998
答案:x=27y=79
(3)44x+90y=7796
44x+y=3476
答案:x=79y=48
(4)76x-66y=4082
30x-y=2940
答案:x=98y=51
(5)67x+54y=8546
71x-y=5680
答案:x=80y=59
(6)42x-95y=-1410
21x-y=1575
答案:x=75y=48
(7)47x-40y=853
34x-y=2006
答案:x=59y=48
(8)19x-32y=-1786
75x+y=4950
答案:x=66y=95
(9)97x+24y=7202
58x-y=2900
答案:x=50y=98
(10)42x+85y=6362
63x-y=1638
答案:x=26y=62
八年级数学上册知识点归纳:分式的加减
一、约分与通分:
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
3.求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
二、分式的运算:
1.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
【分式的运算考点分析】
分式的运算通常是综合考查分式的加减、乘除、约分及分解因式等知识,是中考的重点。特别是化简求值已经成近两年中考的热点。题型既有选择、填空题,也有计算题。
【分式的运算知识点误区】
(1)互为相反数的因式约分时漏掉负号;
(2)通分时漏乘而出错;
(3)把通分与去分母混淆,本是通分,却把分式中的分母丢掉;
(4)计算顺序搞乱而出错。
【典型例题】
分式的四则运算
1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/c±b/c=(a±b)/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/b±c/d=(ad±cb)/bd
3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b*c/d=ac/bd
4.分式的除法法则:
(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c
不论什么样的计算,其过程都是需要大家耐心和细心的。
一般给学生们上课之前,老师就早早地准备好了教案课件,大家在用心的考虑自己的教案课件。只有写好教案课件计划,才能促进我们的工作进一步发展!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“2017年八年级数学上15.3分式方程第2课时分式方程的实际应用学案”,但愿对您的学习工作带来帮助。
第2课时分式方程的实际应用
能将实际问题中的相等关系用分式方程表示,并解决实际问题.
阅读教材P152~153,完成预习内容.
知识探究
1.列方程解应用题的一般步骤是
(1)________________;
(2)________________;
(3)________________;
(4)________________;
(5)________________.
2.类比一般方程,列分式方程解应用题的一般步骤是
(1)________________;
(2)________________;
(3)________________;
(4)________________;
(5)________________;
(6)________________.
自学反馈
重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半.后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半.乙型挖土机单独挖这块地需要几天?
甲型挖土机4天完成了一半,那么甲型挖土机每天挖________________,如果设乙型挖土机单独挖这块地需要x天,那么一天挖________;两台挖土机一天共挖__________;两台一天完成另一半.所以方程为________________;解得x=________.经检验:x=________是原分式方程的解.
答:乙单独挖需________天.
认真分析题意.根据等量关系列方程.
1.甲乙两人分别从相距36千米的A,B两地相向而行,甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样两人恰好在AB中点处相遇.已知甲比乙每小时多走0.5千米,求二人的速度各是多少?
分析:
路程速度时间
甲18+1×2x+0.518+1×2x+0.5
乙18x18x
等量关系:t甲=t乙.
解:设乙的速度为x千米/小时,则甲的速度为(x+0.5)千米/小时.
根据题意,列方程得
18+1×2x+0.5=18x.
解得x=4.5.
检验:当x=4.5时,x(x+0.5)≠0.所以,x=4.5是原方程的解.则x+0.5=5.
答:甲的速度为5千米/小时,乙的速度为4.5千米/小时.
等量关系是时间相等,那么就要找到相等时间里每个人所走的路程,甲的路程比乙的路程多两个1千米.
2.A、B两地相距135千米,有大、小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2∶5,求两辆汽车的速度.
解:设大汽车的速度为2x千米/小时,小汽车的速度为5x千米/小时.
根据题意,列方程得135-2x×52x=135-12×(5x)5x.
解得x=9.
检验:当x=9时,10x≠0.所以,x=9是原方程的解.
则2x=18,5x=45.
答:大汽车的速度是18千米/小时,小汽车的速度是45千米/小时.
等量关系是大汽车5小时后剩下路程所走的时间,等于小汽车去掉30分钟路程所用的时间.
3.一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?
解:设规定日期是x天,则甲队独做需x天,乙队独做需(x+3)天,
根据题意,列方程得2x+xx+3=1.
解得x=6.
检验:当x=6时,x(x+3)≠0.所以,x=6是原方程的解.
答:规定日期是6天.
课堂小结
1.列分式方程解应用题,应该注意解题的六个步骤.
2.列方程的关键是要在准确设元(可直接设,也可间接设)的前提下找出等量关系.
3.解题过程注意画图或列表帮助分析题意找等量关系.
4.注意不要遗漏检验和作答.
【预习导学】
知识探究
1.(1)审题设未知数(2)找等量关系列方程(3)解方程(4)检验根是否符合实际意义(5)作答2.(1)审题设未知数(2)找等量关系列方程(3)去分母化分式方程为整式方程(4)解整式方程(5)检验根是否符合实际意义(6)作答
自学反馈
12÷4=181x18+1x18+1x=128383
文章来源:http://m.jab88.com/j/56755.html
更多