每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“整式的乘法—单项式乘以多项式1教案”,希望能为您提供更多的参考。
内容:整式的乘法—单项式乘以多项式P58-59
课型:新授时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则
学习难点:对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(-a2b)(2ab)3=
(2)(-2x2y)2(-xy)-(-xy)3(-x2)
3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、问题:一个施工队修筑一条路面宽为nm的公路,第一天修筑am长,第二天修筑长bm,第三天修筑长cm,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面m2.
因此,有=。
3.你能用字母表示乘法分配律吗?
4.你能尝试总结单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3计算:
(1)(-2x)(-x2–x+1)(2)a(a2+a)-a2(a-2)
2、练一练
(1)5x(3x+4)(2)(5a2–a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2–x-1)
(4)(–a)(-2ab)+3a(ab-b-1))
(三)学习体会
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59练习3,结合解题,体会单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b)=-6a2-8ab()
(2)(3x2-xy-1)x=x3-x2y-x()
(3)m2-(1-m)=m2--m()
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于()
A.-1B.0C.1D.无法确定
4、计算(2009贺州中考)
(-2a)(a3-1)=
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2)(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2ncm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
北师大版实验教科书七年级下册
1.6单项式的乘法
教学目标
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;
2.注意培养学生归纳、概括能力,以及运算能力.
教学重点和难点
准确、迅速地进行单项式的乘法运算.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.下列单项式各是几次单项式?它们的系数各是什么?
2.下列代数式中,哪些是单项式?哪些不是?
3.利用乘法的交换律、结合律计算6×4×13×25.
4.前面学习了哪三种幂的运算性质?内容是什么?
二、讲授新课
1.引导学生得出单项式的乘法法则
利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:
(1)2x2y3xy2
=(2×3)(x2x)(yy2)
=6x3y3;
(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)
(2)4a2x5(-3a3bx)
=[4×(-3)](a2a3)b(x5x)
=-12a5bx6.
(b只在一个单项式中出现,这个字母及其指数照抄)
学生练习,教师巡视,然后由学生总结出单项式的乘法法则:
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
2.引导学生剖析法则
(1)法则实际分为三点:①系数相乘——有理数的乘法;②相同字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.
(2)不论几个单项式相乘,都可以用这个法则.
(3)单项式相乘的结果仍是单项式.
三、应用举例变式练习
例1计算:
(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);
(4)(-3ab)(-a2c)26ab(c2)3.
解:(1)(-5a2b3)(-3a)
=[(-5)(-3)](a2a)b3
=15a3b3;
(2)(2x)3(-5x2y)
=8x3(-5x2y)
=[8×(-5)](x3x2)y
=-40x5y;
(4)(-3ab)(-a2c)26ab(c2)3
=(-3ab)a4c26abc6
=[(-3)×6]a6b2c8
=-18a6b2c8.
第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演,根据学生板演情况,教师提醒学生注意:先做乘方,再做单项式相乘,中间过程要详细写出,待熟练后才可省略.
课堂练习
1.计算:
(1)3x55x3;(2)4y(-2xy3);
2.计算:
(1)(3x2y)3(-4xy2);(2)(-xy2z3)4(-x2y)3.
3.计算:
(1)(-6an+2)3anb;
(4)6abn(-5an+1b2).
例2光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?
解:(3×105)×(5×102)
=15×107=1.5×108.
答:地球与太阳的距离约是1.5×108千米.
先由学生讨论解题的方法,然后由教师根据学生的回答板书.
课堂练习
一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?
四、小结
1.单项式的乘法法则可分为三点,在解题中要灵活应用.
2.在运算中要注意运算顺序.
教后记:
在教学中,除了在难点与关键处给以适度的启示与点拨之外,尽量引导学生去独立探索和思考.凡学生力所能及之处,教师一概不包办代替,在课堂内最大限度地给学生创造思维自由驰骋的时间和空间.问题由教师提出,而结论则由学生通过一定的智力活动后而获得.
教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“整式(1)单项式学案”,供您参考,希望能够帮助到大家。
第1课时
课题2.1整式(1)单项式
学习目标
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养
学生自主探索知识和合作交流能力。
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地
确定一个单项式的系数和次数。
难点:单项式概念的建立。
学法指导
本节课从生活中的实际引入,让学生经历由数字到用字母表示数的
过程,提出问题,让学生列出相应的关系式,学生探究式子特点,从而
得出单项式概念。通过实际问题的解决过程,引导学生观察、归纳,探索学习的同时,学生掌握知识,并且渗透化归思想。
课前预习
阅读教科书第54—56页,2.1整式:1.单项式。回答下列问题:
1、什么是单项式?
2、怎样确定单项式的系数、次数?
3、用字母表示数有什么好处?你能赋予0.9a一个含义吗?
新授课导学稿
课堂导学
一、创设问题情境:
1.填空
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是;
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.试说出所列式子的意义。
3.观察所列式子包含哪些运算,有何共同的运算特征。
二、自主学习与合作探究:
1、检查预习情况。
2、学生归纳:
单项式:
由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a,5……
单项式系数和次数:
进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
系数:单项式中的字母因数
次数:单项式中所有字母的指数和
三、例题示范:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-a2b。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
课堂导学
注意事项:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③省略1的字母指数别漏掉;
④单项式次数只与字母指数有关。
四、当堂检测
1、填表
单项式10%b
所含字母r
系数
次数3
2、整式3x,-ab,t+1,0.12h+b中,单项式有_________,
3、(1)如果单项式的次数是5,求n的值。
(2)如果是关于x、y的5次单项式,且系数是4,求m、n的值.
五、总结与归纳
单项式:数字或的叫做单项式。单独的一个或___也是单项式。
单项式中的叫做单项式的系数,单项式的次数是指。但不包括的指数。单项式的中不能含字母。
六、布置作业
习题2.1第1、3
广灵三中2011——2012学年度第一学期
新授课导学稿
板书设计2.1整式(1)单项式
导学后反思
本节属于概念教学课,在教学过程中,力图体现概念形成的过程,
即首先给学生以感性材料,让学生观察、比较、分析,找出材料中个体
的共同特点,之后进行归纳、抽象、概括单项式概念,这样的教学设计,
培养了学生学习数学各方面的能力。学生积极性很高,学习效果良好。
.
文章来源:http://m.jab88.com/j/51995.html
更多