88教案网

新版新人教版八年级数学上14.1整式的乘法14.1.4整式的乘法_单项式乘以单项式学案

一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。只有规划好教案课件计划,才能更好地安排接下来的工作!哪些范文是适合教案课件?下面是小编帮大家编辑的《新版新人教版八年级数学上14.1整式的乘法14.1.4整式的乘法_单项式乘以单项式学案》,欢迎您参考,希望对您有所助益!

14.1.4整式的乘法—单项式乘以单项式
【学习目标】
1.理解整式运算的算理,会进行简单的整式乘法运算.
2.经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.
【学习重点】单项式乘法运算法则的推导与应用.
【学习难点】单项式乘法运算法则的推导与应用.
【学习过程】
一、知识链接:
1.是单项式.为单项式的次数.
为单项式的系数。
2.幂的三个运算法则,它们分别是:
○1;○2;
○3.
3.现有一长方形的相框知道长为50厘米,宽为20厘米,它的面积是多少?若长为厘米,宽为厘米,你能知道它的面积吗?请试一试?

二、自主学习:阅读教材P98-99页
1.利用乘法结合律和交换律完成下列计算.
①;②;③;

2、观察上式计算你能发现什么规律吗?说说看.
3、单项式乘以单项式的法则:单项式与单项式相乘,把它们的、分别相乘,对于只在个单项式里含有的字母,则连同它的作为积的一个因式.
三.学会应用:
1.计算:①;②.
思路点拨:可以直接运用法则也用乘法运算律变成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄。

四、及时巩固
1.计算:(1);

2.下面计算对不对?如果不对,应该怎样改正?
(1);(2);
4、一家住房的结构如图,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地板砖的价格是每平方米元,则购买所需地砖至少多少元?

五、课堂小结
单项式乘以单项式法则:.
.
.
六、课后反思:.
(实际用课时)
八年级(上)数学讲学稿
课题:14.1.4整式的乘法——单项式乘以多项式
课型:新课计划课时:1主备人:梁素芬审核人:.
【学习目标】
1.让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.
2.经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.
【学习重点】单项式与多项式相乘的法则.
【学习难点】整式乘法法则的推导与应用.
【学习过程】
一、知识链接:
1.复述去括号法则?
(1)括号前面是“+”号,去掉“+”号,.
(2)括号前面是“-”号,去掉“-”号,.
2.单项式乘以单项式的法则是:
单项式与单项式相乘,等于把、分别相乘,对于只在个单项式里含有的字母,则连同它的作为的一个因式.
3.计算:①②

二、自主学习:阅读教材P99-100页
1.利用乘法分配律计算:
①;②

2.有三家超市以相同的价格(单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是:,,请你用不同的方法计算他们在这一年内销售这钟空调的总收入?你发现了什么规律?

3、单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的,再把所得的.用符号语言表示为:.
三、学以致用:
例1计算:(1)(2)
解:解:

四、及时巩固:
1.计算:(1);(2)

五、拓展提高:
1.解方程:

2.求值:,其中.

六、课后反思:,
.
(实际用课时)
八年级(上)数学讲学稿
课题:14.1.4整式的乘法——多项式乘以多项式
课型:新课计划课时:1主备人:梁素芬审核人:.
【学习目标】
1.让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.
2.经历探索多项式与多项式相乘的运算法则的推理过程,培养学生计算能力.
3.发展有条理的思考,逐步形成主动探索的习惯.
【学习重点】多项式与多项式的乘法法则的理解及应用.
【学习难点】多项式与多项式的乘法法则的应用.
【学习过程】
一、知识链接:
1.叙述单项式乘以单项式的法则:单项式与多项式相乘,,再把所得的.
2.计算;(1)(2)
jab88.CoM

二、自主学习:阅读教材P100-101页
在硬纸板上用直尺画出一个矩形,并且分成如图所示的四部分标上字母,则面积为多少?
1.请用两种方法表示右图的面积:
方法1:.
方法2:.
2.从以上两种方法的计算,你发现了什么?(列式表示)
.
3.上面的等式提供了多项式与多项式相乘的方法.
计算,可以先把其中一个多项式,如,看成一个整体,运用单项式与多项式相乘的法则,得=.
总体上看,的结果可以看作由的每一项乘的每一项,再把所得的积相加而得到的,即.
4.多项式乘以多项式的法则:多项式与多项式相乘,先用,再把.符号语言为:.
三、学以致用:
例1计算:

四、及时巩固:
1.计算:(1);
2.计算:

由上面计算结果找规律,填空:

五、课后反思:,
,
.
(实际用课时)
八年级(上)数学讲学稿
课题:14.1.4整式的乘法——同底数幂相除
课型:新课计划课时:1主备人:梁素芬审核人:.
【学习目标】
1.同底数幂的除法的运算法则及其应用;同底数幂的除法的运算算理.
2.经历探索同底数幂的除法的运算法则的过程,会进行同底数幂的除法运算;理解同底数幂的除法的运算算理,发展有条理的思考及表达能力.
【学习重点】准确熟练地运用同底数幂的除法运算法则进行计算.
【学习难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.
【学习过程】
一、知识链接:
1.同底数幂的乘法运算法则:.
用字母符号表示为:am·an=am+n(m、n是)
2.计算:(1)28×28(2)52×53

(3)102×105(4)a3·a3

3.填空:(1)()·28=216;(2)()·53=55;
(3)()·105=107;(4)()·a3=a6
二、自主学习:
1.问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?

2、利用除法与乘法两种运算互逆,填空:
(1)216÷28=();(2)55÷53=();
(3)107÷105=();(4)a6÷a3=().
3、观察以上4个小题计算的结果的幂的底数和指数的变化规律,得到同底数幂的除法运算可以叙述为:同底数幂相除,底数,指数.
即符号表示为:
思考:对于除法运算,有没有什么特殊要求呢?字母、m、n都满足什么条件?
.
4、同底数幂的除法的运算法则:同底数幂相除,底数不变,指数相减.
即:(≠0,m,n都是数,并且)
三、学以致用:
1.同底数幂的除法的算理
方法一:根据除法是乘法的逆运算∵∴.
方法二:
2.例1计算:
(1);(2);(3).
例2先分别利用除法的意义填空,再利用的方法计算,你能得出什么结论?
(1)32÷32=()
(2)103÷103=()
(3)am÷an=()(a≠0)
总结得a0=1(a≠0)
于是规定:a0=1(a≠0)
即:任何不等于0的数的0次幂都等于1.
综合上述,同底数幂的除法的运算可归纳:(≠0,m、n都是正整数,且mn).
四、及时巩固:
1、计算:(1);(2);

五、课堂小结:
这节课大家利用除法的意义及乘、除互逆的运算,揭示了的运算规律,并能运用运算法则解决简单的计算问题,积累了一定的数学经验.
六、拓展提高:
1、计算:(1);(2);

课题:14.1.4整式的乘法——整式的除法
课型:新课计划课时:1人:.
【学习目标】
1.单项式除以单项式和多项式除以单项式的运算法则及其应用.
2.单项式除以单项式和多项式除以单项式的运算算理.
3.经历探索单项式除以单项式和多项式除以单项式的运算法则的过程,会进行单项式与单项式的除法运算.
【学习重点】单项式除以单项式和多项式除以单项式的运算法则及其应用.
【学习难点】探索单项式与单项式相除和多项式除以单项式的运算法则的过程.
【学习过程】
一、知识链接:
1.用字母表示幂的运算性质:(1)=(2)=.
(3)=(4)=(5)=.
2.计算:
(1)(2)(3)

二、自主学习:阅读课本P103-104
观察讨论以下的三个式子是什么样的运算.8a3÷2a,6x3y÷3xy,12a3b2x3÷3ab2.
思考:上一节我们学过同底数幂的除法运算,你思考一下可不可以用现有的知识和数学方法解决“讨论”中的问题呢?
提示:可以从两方面考虑.
(1)从乘法与除法互为逆运算的角度.
可以想象2a·()=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2,
即2a·(4a2)=8a3.所以8a3÷2a=4a2.
同样的道理可以得到3xy·()=6x3y;3ab2·()=12a3b2x3,
考虑到6÷3=2,x3÷x=x2,y÷y=1;12÷3=4,a3÷a=a2,b2÷b2=1.
所以得3xy·(2x2)=6x3y;3ab2·(4a2x3)=12a3b2x3.
所以6x3y÷3xy=2x2;12a3b2x3÷3ab2=4a2x3.
(2)还可以从除法的意义去考虑.

.
.
上述两种算法有理有据,所以结果正确.
观察上述几个式子的运算,它们有下列共同特征:
(1)都是除以单项式.
(2)运算结果都是把系数、同底数幂分别后作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
(3)单项式相除是在同底数幂的除法基础上进行的.
单项式相除的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于
.
三、学以致用:
例1、计算:
(1)28x4y2÷7x3y(2)-5a5b3c÷15a4b
(3)(2x2y)3·(-7xy2)÷14x4y3(4)
分析:(1)、(2)直接运用单项式除法的运算法则;(3)要注意运算顺序:先乘方,再乘除,再加减;(4)鼓励学生悟出:将(2a+b)视为一个整体来进行单项式除以单项式的运算.
解:(1)28x4y2÷7x3y
原式=(28÷7)·x4-3·y2-1
=4xy.

探究计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.
①说说你是怎样计算的?②还有什么发现吗?

观察上述几个式子的运算,它们都有什么共同特征:
(1)都是除以单项式.
(2)运算结果都是式
(3)多项式除以单项式的运算都是要转化为相除的运算.
多项式除以单项式法则
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
可以写成公式的形式为:++.
四、及时巩固
计算:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

五、课后反思:,
.
(实际用课时)

相关知识

整式的乘法—单项式乘以多项式1教案


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“整式的乘法—单项式乘以多项式1教案”,希望能为您提供更多的参考。

内容:整式的乘法—单项式乘以多项式P58-59
课型:新授时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则
学习难点:对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(-a2b)(2ab)3=
(2)(-2x2y)2(-xy)-(-xy)3(-x2)

3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、问题:一个施工队修筑一条路面宽为nm的公路,第一天修筑am长,第二天修筑长bm,第三天修筑长cm,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面m2.
因此,有=。
3.你能用字母表示乘法分配律吗?

4.你能尝试总结单项式乘以多项式的法则吗?

(二)师生探究,合作交流
1、例3计算:
(1)(-2x)(-x2–x+1)(2)a(a2+a)-a2(a-2)
2、练一练
(1)5x(3x+4)(2)(5a2–a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2–x-1)
(4)(–a)(-2ab)+3a(ab-b-1))
(三)学习体会
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

(四)自我测试
1、教科书P59练习3,结合解题,体会单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b)=-6a2-8ab()
(2)(3x2-xy-1)x=x3-x2y-x()
(3)m2-(1-m)=m2--m()
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于()
A.-1B.0C.1D.无法确定
4、计算(2009贺州中考)
(-2a)(a3-1)=
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2)(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2ncm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

单项式的乘法


北师大版实验教科书七年级下册
1.6单项式的乘法
教学目标
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;
2.注意培养学生归纳、概括能力,以及运算能力.
教学重点和难点
准确、迅速地进行单项式的乘法运算.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.下列单项式各是几次单项式?它们的系数各是什么?
2.下列代数式中,哪些是单项式?哪些不是?
3.利用乘法的交换律、结合律计算6×4×13×25.
4.前面学习了哪三种幂的运算性质?内容是什么?
二、讲授新课
1.引导学生得出单项式的乘法法则
利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:
(1)2x2y3xy2
=(2×3)(x2x)(yy2)
=6x3y3;
(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)
(2)4a2x5(-3a3bx)
=[4×(-3)](a2a3)b(x5x)
=-12a5bx6.
(b只在一个单项式中出现,这个字母及其指数照抄)
学生练习,教师巡视,然后由学生总结出单项式的乘法法则:
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
2.引导学生剖析法则
(1)法则实际分为三点:①系数相乘——有理数的乘法;②相同字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.
(2)不论几个单项式相乘,都可以用这个法则.
(3)单项式相乘的结果仍是单项式.

三、应用举例变式练习
例1计算:
(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);
(4)(-3ab)(-a2c)26ab(c2)3.

解:(1)(-5a2b3)(-3a)
=[(-5)(-3)](a2a)b3
=15a3b3;
(2)(2x)3(-5x2y)
=8x3(-5x2y)
=[8×(-5)](x3x2)y
=-40x5y;

(4)(-3ab)(-a2c)26ab(c2)3
=(-3ab)a4c26abc6
=[(-3)×6]a6b2c8
=-18a6b2c8.
第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演,根据学生板演情况,教师提醒学生注意:先做乘方,再做单项式相乘,中间过程要详细写出,待熟练后才可省略.
课堂练习
1.计算:
(1)3x55x3;(2)4y(-2xy3);

2.计算:
(1)(3x2y)3(-4xy2);(2)(-xy2z3)4(-x2y)3.
3.计算:
(1)(-6an+2)3anb;

(4)6abn(-5an+1b2).

例2光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?
解:(3×105)×(5×102)
=15×107=1.5×108.
答:地球与太阳的距离约是1.5×108千米.
先由学生讨论解题的方法,然后由教师根据学生的回答板书.
课堂练习
一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?

四、小结
1.单项式的乘法法则可分为三点,在解题中要灵活应用.
2.在运算中要注意运算顺序.

教后记:
在教学中,除了在难点与关键处给以适度的启示与点拨之外,尽量引导学生去独立探索和思考.凡学生力所能及之处,教师一概不包办代替,在课堂内最大限度地给学生创造思维自由驰骋的时间和空间.问题由教师提出,而结论则由学生通过一定的智力活动后而获得.

整式(1)单项式学案


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“整式(1)单项式学案”,供您参考,希望能够帮助到大家。

第1课时
课题2.1整式(1)单项式

学习目标
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养
学生自主探索知识和合作交流能力。
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地
确定一个单项式的系数和次数。
难点:单项式概念的建立。

学法指导
本节课从生活中的实际引入,让学生经历由数字到用字母表示数的
过程,提出问题,让学生列出相应的关系式,学生探究式子特点,从而
得出单项式概念。通过实际问题的解决过程,引导学生观察、归纳,探索学习的同时,学生掌握知识,并且渗透化归思想。

课前预习
阅读教科书第54—56页,2.1整式:1.单项式。回答下列问题:
1、什么是单项式?
2、怎样确定单项式的系数、次数?
3、用字母表示数有什么好处?你能赋予0.9a一个含义吗?

新授课导学稿
课堂导学
一、创设问题情境:
1.填空
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是;
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.试说出所列式子的意义。
3.观察所列式子包含哪些运算,有何共同的运算特征。
二、自主学习与合作探究:
1、检查预习情况。
2、学生归纳:
单项式:
由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a,5……
单项式系数和次数:
进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
系数:单项式中的字母因数
次数:单项式中所有字母的指数和
三、例题示范:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-a2b。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。

课堂导学

注意事项:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③省略1的字母指数别漏掉;
④单项式次数只与字母指数有关。
四、当堂检测
1、填表
单项式10%b
所含字母r
系数
次数3
2、整式3x,-ab,t+1,0.12h+b中,单项式有_________,
3、(1)如果单项式的次数是5,求n的值。
(2)如果是关于x、y的5次单项式,且系数是4,求m、n的值.
五、总结与归纳
单项式:数字或的叫做单项式。单独的一个或___也是单项式。
单项式中的叫做单项式的系数,单项式的次数是指。但不包括的指数。单项式的中不能含字母。
六、布置作业
习题2.1第1、3

广灵三中2011——2012学年度第一学期
新授课导学稿

板书设计2.1整式(1)单项式

导学后反思
本节属于概念教学课,在教学过程中,力图体现概念形成的过程,
即首先给学生以感性材料,让学生观察、比较、分析,找出材料中个体
的共同特点,之后进行归纳、抽象、概括单项式概念,这样的教学设计,
培养了学生学习数学各方面的能力。学生积极性很高,学习效果良好。
.

文章来源:http://m.jab88.com/j/51995.html

更多

最新更新

更多