应用抽样方法抽取样本时,应注意以下几点:
(1)用随机数法抽样时,对个体所编的号码位数要相等.当问题所给位数不相等时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.
(2)用系统抽样抽样时,如果总体容量N能被样本容量n整除,抽样间隔为k=Nn,如果总体容量N不能被样本容量n整除,先用简单随机抽样剔除多余个体,抽样间隔为k=Nn.Nn表示取Nn的整数部分
(3)几种抽样方法的适用范围:当总体容量较小,样本容量也较小时,可采用抽签法;当总体容量较大,样本容量较小时,可采用随机数法;当总体容量较大,样本容量也较大时,可采用系统抽样;当总体中个体差异较显著时,可采用分层抽样.
[典例1]选择合适的抽样方法抽样,写出抽样过程.
(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;
(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样;
(3)有甲厂生产的300个篮球,抽取10个入样;
(4)有甲厂生产的300个篮球,抽取30个入样.
解:(1)总体由差异明显的两个层次组成,需选用分层抽样法.
第一步:确定抽取个数.因为1030=13,所以甲厂生产的篮球应抽取21×13=7(个),乙厂生产的篮球应抽取9×13=3(个);
第二步:用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便组成了我们要抽取的样本.
(2)总体容量较小,用抽签法.
第一步:将30个篮球用随机方式分段,分段为1,2,…,30;
第二步:将以上30个分段分别写在大小、形状相同的小纸条上,揉成小球,制成号签;
第三步:把号签放入一个不透明的袋子中,充分搅匀;
第四步:从袋子中逐个不放回抽取3个号签,并记录上面的号码;
第五步:找出和所得号码对应的篮球,这些篮球便组成了我们要抽取的样本.
(3)总体容量较大,样本容量较小,宜用随机数表法.
第一步:将300个篮球用随机方式分段,分段为001,002,…,300;
第二步:在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数方向,比如向右读;
第三步:从数“7”开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到286,211,234,297,207,013,027,086,284,281这10个号码,这就是所要抽取的10个样本个体的号码,找出和所得号码对应的篮球便组成我们要抽取的样本.
(4)总体容量较大,样本容量也较大宜用系统抽样法.
第一步:将300个篮球用随机方式分段,分段为000,001,002,…,299,并分成30段.
第二步:在第一段000,001,002,…,009这十个分段中用简单随机抽样抽出一个(如002)作为始号码;
第三步:将分段为002,012,022,…,292的个体抽出,组成样本.
[对点训练]
1.某高级中学有学生270人,其中一年级108人,二、三年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一分段为1,2,…,270;使用系统抽样时,将学生统一随机分段为1,2,…,270,并将整个分段依次分为10段.如果抽得的号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
A.②③都不能为系统抽样B.②④都不能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样
解析:选D按分层抽样时,在一年级抽取108×10270=4(人),在二年级、三年级各抽取81×10270=3(人),则在号码段1,2,…,108中抽取4个号码,在号码段109,110,…,189中抽取3个号码,在号码段190,191,…,270中抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.
本考点主要利用统计表、统计图分析估计总体的分布规律.要熟练掌握绘制统计图表的方法,明确图表中有关数据的意义是正确分析问题的关键,从图形与图表中获取有关信息并加以整理,是近年来高考命题的热点.
[典例2]样本容量为100的频率分布直方图如图所示.
根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是()
A.32,0.4B.8,0.1
C.32,0.1D.8,0.4
解析:选A落在[6,10)内的频率为0.08×4=0.32,
100×0.32=32,∴a=32,
落在[2,10)内的频率为(0.02+0.08)×4=0.4.∴b=0.4.
[对点训练]
2.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数是11,则样本中平均气温不低于25.5℃的城市个数为________.
解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.
答案:9
样本的数字特征可分为两大类,一类反映样本数据的集中趋势,包括样本平均数、众数、中位数;另一类反映样本数据的波动大小,包括样本方差及标准差.通常,我们用样本的数字特征估计总体的数字特征.有关样本平均数及方差的计算和应用是高考考查的热点.
[典例3]甲、乙两人在相同的条件下各射靶10次,每次射靶成绩(单位:环)如图所示:
(1)填写下表:
平均数中位数命中9环以上
甲7________1
乙________________3
(2)请从四个不同的角度对这次测试进行分析:
①结合平均数和方差,分析偏离程度;
②结合平均数和中位数,分析谁的成绩好些;
③结合平均数和命中9环以上的次数,看谁的成绩好些;
④结合折线图上两人射击命中环数及走势,分析谁更有潜力.
解:(1)甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,
∴中位数为7环.
乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10,
∴x乙=110(2+4+6+8+7+7+8+9+9+10)=7(环).
乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,
∴中位数是7+82=7.5(环).
于是填充后的表格,如图所示:
平均数中位数命中9环以上
甲771
乙77.53
(2)s2甲=110[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=1.2,
s2乙=110[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.
①甲、乙的平均数相同,均为7,但s2甲<s2乙,说明甲偏离平均数的程度小,而乙偏离平均数的程度大.
②甲、乙的平均数相同,而乙的中位数比甲大,说明乙射靶环数的优秀次数比甲多.
③甲、乙的平均数相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.
④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.
[对点训练]
3.从一堆苹果中任取5只,称得它们的质量如下(单位:克):125,124,121,123,127,则该样本标准差s=________(克)(用数字作答).
解析:先求平均数x=125+124+121+123+1275=124(克),则样本标准差
s=125-x2+124-x2+…+127-x25
=1+0+…+95=2.
答案:2
1.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘法求出回归方程.把样本数据表示的点在直角坐标系中作出,构成的图叫做散点图.从散点图上,我们可以分析出两个变量是否存在相关关系.如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,直线方程叫做回归方程.
2.回归方程的应用
利用回归方程可以对总体进行预测,虽然得到的结果不是准确值,但我们是根据统计规律得到的,因而所得结果的正确率是最大的,所以可以大胆地利用回归方程进行预测.
[典例4]某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下列所示对应的数据:
广告支出x(万元)1234
销售收入y(万元)12284460
(1)画出表中数据的散点图;
(2)求出y对x的回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
解:(1)依表中数据,画出散点图如图.
(2)观察散点图可知,各点大致分布在一条直线附近,所以变量x,y线性相关.将相关数据列表如下:
i1234
xi1234
yi12284460
xiyi1256132240
x2i
14916
x=2.5,y=36,
i=14xiyi=440,i=14x2i=30
设回归方程为y^=b^x+a^,于是
b^=440-4×2.5×3630-4×2.52=805=16,
a^=y-b^x=36-16×2.5=-4,
∴y对x的回归方程为y^=16x-4.
(3)当广告费为9万元时,y^=16×9-4=140(万元),
即广告费为9万元时,销售收入约为140万元.
[对点训练]
4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x/cm174176176176178
儿子身高y/cm175175176177177
则y对x的线性回归方程为()
A.y^=x-1B.y^=x+1
C.y^=88+12xD.y^=176
解析:选C由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.
(时间:120分钟满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各选项中的两个变量具有相关关系的是()
A.长方体的体积与边长
B.大气压强与水的沸点
C.人们着装越鲜艳,经济越景气
D.球的半径与表面积
解析:选CA、B、D均为函数关系,C是相关关系.
2.下列说法错误的是()
A.在统计里,最常用的简单随机抽样方法有抽签法和随机数法
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D.一组数据的方差越大,说明这组数据的波动越大
解析:选B平均数不大于最大值,不小于最小值.
3.(2016开封高一检测)某学校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女学生一共抽取了80人,则n的值是()
A.193B.192C.191D.190
解析:选B1000×n200+1200+1000=80,解得n=192.
4.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大()
A.2.7岁B.3.1岁C.3.2岁D.4岁
解析:选C分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.
5.如果在一次实验中,测得(x,y)的四组数值分别是A(1,3),B(2,3.8),C(3,5.2),D(4,6),则y与x之间的回归直线方程是()
A.y^=x+1.9B.y^=1.04x+1.9
C.y^=0.95x+1.04D.y^=1.05x-0.9
解析:选Bx=14(1+2+3+4)=2.5,y=14(3+3.8+5.2+6)=4.5.因为回归直线方程过样本点中心(x,y),代入验证知,应选B.
6.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2700,3000)的频率为()
A.0.001B.0.1C.0.2D.0.3
解析:选D由直方图可知,所求频率为0.001×300=0.3.
7.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数大于该班女生成绩的平均数
解析:选CA不是分层抽样,因为抽样比不同.B不是系统抽样,因为是随机询问,抽样间隔未知.C中五名男生成绩的平均数是x=86+94+88+92+905=90,五名女生成绩的平均数是y=88+93+93+88+935=91,五名男生成绩的方差为s21=15(16+16+4+4+0)=8,五名女生成绩的方差为s22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D中由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.
8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()
图1
图2
A.1%B.2%C.3%D.5%
解析:选C由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.
9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()
A.高一的中位数大,高二的平均数大
B.高一的平均数大,高二的中位数大
C.高一的平均数、中位数都大
D.高二的平均数、中位数都大
解析:选A由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.
10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为()
A.32B.0.2C.40D.0.25
解析:选A由频率分布直方图的性质,可设中间一组的频率为x,则x+4x=1,∴x=0.2,故中间一组的频数为160×0.2=32,选A.
11.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别分段为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()
A.6B.8C.12D.18
解析:选C志愿者的总人数为200.16+0.24×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.
12.设矩形的长为a,宽为b,若其比满足ba=5-12≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.5980.6250.6280.5950.639
乙批次:0.6180.6130.5920.6220.620
根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是()
A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近
C.两个批次总体平均数与标准值接近程度相同
D.两个批次总体平均数与标准值接近程度不能确定
解析:选A甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;
乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.
二、填空题(本大题共4小题,每小题5分,共20分)
13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则选送决赛的最佳人选应是________.
甲乙丙丁
x
7887
s2.52.52.83
解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好.
答案:乙
14.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的数字特征(众数、中位数、平均数、方差)对应相同的是________.
解析:由s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],可知B样本数据每个变量增加2,平均数也增加了,但s2不变,故方差不变.
答案:方差
15.某校开展“爱我母校,爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.
解析:由于需要去掉一个最高分和一个最低分,故需要讨论:
①若x≤4,∵平均分为91,∴总分应为637分.即89+89+92+93+92+91+90+x=637,∴x=1.
②若x>4,则89+89+92+93+92+91+94=640≠637,不符合题意,故填1.
答案:1
16.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.
解析:在频率分布直方图中,所有小长方形的面积和为1,
设[70,80)的小长方形面积为x,则(0.01+0.015×2+0.025+0.005)×10+x=1,解得x=0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.
答案:71
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(10分)已知一组数据从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.
解:由于数据-1,0,4,x,7,14的中位数为5,
所以4+x2=5,x=6.
设这组数据的平均数为x,方差为s2,由题意得
x=16×(-1+0+4+6+7+14)=5,
s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.
18.(12分)2015年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的摩托车驾驶人员每隔50人询问一次省籍,询问结果如图所示:
(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?
(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?
解:(1)根据题意,因为有相同的间隔,符合系统抽样的特点,所以交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.
(2)从图中可知,被询问了省籍的驾驶人员中
广西籍的有5+20+25+20+30=100(人),
四川籍的有15+10+5+5+5=40(人),
设四川籍的驾驶人员应抽取x名,依题意得5100=x40,
解得x=2,即四川籍的应抽取2名.
19.(12分)某制造商为运动会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.0240.0039.9840.0039.99
40.0039.9840.0139.9839.99
40.0039.9939.9540.0140.02
39.9840.0039.9940.0039.96
(1)完成下面的频率分布表,并画出频率分布直方图;
分组频数频率频率组距
[39.95,39.97)
[39.97,39.99)
[39.99,40.01)
[40.01,40.03]
合计
(2)假定乒乓球的直径误差不超过0.02mm为合格品,若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.
解:(1)
分组频数频率频率组距
[39.95,39.97)20.105
[39.97,39.99)40.2010
[39.99,40.01)100.5025
[40.01,40.03]40.2010
合计20150
(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,
∴10000×90%=9000(只).
即根据抽样检查结果,可以估计这批产品的合格只数为9000.
20.(12分)某零售店近5个月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x/千万元35679
利润额y/百万元23345
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额y关于销售额x的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
参考公式:b^=i=1nxi-xyi-yi=1nxi-x2,a^=y-b^x
解:(1)散点图如图所示,两个变量有线性相关关系.
(2)设回归直线方程是y^=b^x+a^.
由题中的数据可知y=3.4,x=6.
所以b^=i=1nxi-xyi-yi=1nxi-x2
=-3×-1.4+-1×-0.4+1×0.6+3×1.69+1+1+9
=1020=0.5.
a^=y-b^x=3.4-0.5×6=0.4.
所以利润额y关于销售额x的回归直线方程为
y^=0.5x+0.4.
(3)由(2)知,当x=4时,y=0.5×4+0.4=2.4,所以当销售额为4千万元时,可以估计该商场的利润额为2.4百万元.
21.(12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:8281797895889384
乙:9295807583809085
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
解:(1)作出茎叶图:
(2)x甲=18(78+79+81+82+84+88+93+95)=85,
x乙=18(75+80+80+83+85+90+92+95)=85.
s2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
s2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
∵x甲=x乙,s2甲<s2乙,
∴甲的成绩较稳定,派甲参赛比较合适.
22.(12分)已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图甲所示的茎叶图.
(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总重量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图乙是按上述分组方法得到的频率分布直方图的一部分.
①估汁池塘中鱼的重量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数及池塘中鱼的总重量.
图甲图乙
解:(1)根据茎叶图可知,鲤鱼与鲫鱼的平均数目分别为80,20.
由题意知,池塘中鱼的总数目为1000÷80+202000=20000(条),
则估计鲤鱼数目为20000×80100=16000(条),鲫鱼数目为20000-16000=4000(条).
(2)①根据题意,结合直方图可知,池塘中鱼的重量在3千克以上(含3千克)的条数约为20000×(0.12+0.08+0.04)×0.5=2400(条).
②设第二组鱼的条数为x,则第三、四组鱼的条数分别为x+7、x+14,则有x+x+7+x+14=100×(1-0.55),解得x=8,
故第二、三、四组的频率分别为0.08、0.15、0.22,它们在频率分布直方图中的小矩形的高度分别为0.16,0.30,0.44,据此可将频率分布直方图补充完整(如图).
③众数为2.25千克,平均数为0.25×0.04+0.75×0.08+1.25×0.15+…+4.25×0.02=2.02(千克),
所以鱼的总重量为2.02×20000=40400(千克).
第三章三角恒等变换章末小结
【复习目标】
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
【知识与方法】
1、熟练记忆三角恒等变换公式:
2、三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即:
(1)找差异:角、名、形的差别;
(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;
(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式。
如:升降幂公式;
;
;
tan±tan=tan(±)(1tantan);
1=sin2+cos2(1的代换);
拆角cos=coscos(-)-sinsin(-);
切化弦等。
3.asin+bcos=sin(+φ),其中cosφ=___,sinφ=___,即tanφ=ba.
【题型总结】
题型1、化简求值:综合使用三角函数的定义、性质、公式,求出三角函数式的值。
化简要求:________、________、__________、__________、__________、__________;
1、化简(1);
(2)sin2sin2+cos2cos2-cos2cos2。
2、求值:
题型2、条件求值:综合考虑要求值的式子和条件式的关联,对于已知条件式的应用及其变形是解决此类问题的关键。
3、已知=,=,求的值。
4.已知
求的值。
题型3、知值求角:
(1)先求角的某一个三角函数值:要注意象限角的范围与三角函数值的符号之间联系;
(2)尽量小的确定角的范围:通过已知的角的范围及其函数值的大小。
5.已知在中,
求角的大小。
6.设、为锐角,且3sin2+2sin2=1,3sin2-2sin2=0,求证:+2=。
题型4、恒等式的证明:是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
7.已知,
求证:
8.求证
题型5、化成一个角的形式:
9.函数有最大值,最小值,则实数____,___。
10.函数的图象的一个对称中心是()
A.B.
C.D.
题型6、三角函数的综合应用,
11.已知△ABC的内角满足,若,且满足:,,为的夹角.求。
12.如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面。若水渠断面面积设计为定值m,渠深8米。则水渠壁的倾角应为多少时,方能使修建的成本最低?
【课时练习】
1.当时,函数的最小值是()
A.B.C.D.
2.在△ABC中,,则△ABC为)
A.锐角三角形B.直角三角形
C.钝角三角形D.无法判定
3.函数的最小正周期是()
A.B.
C.D.
4.已知那么的值为,的值为
5.已知,,则=__________。
6.函数在区间上的最小值为.
7.已知函数的定义域为,
(1)当时,求的单调区间;
(2)若,且,当为何值时,为偶函数.
8.已知函数
(1)求取最大值时相应的的集合;
(2)该函数的图象经过怎样的平移和伸缩变换可以得到的图象
【延伸探究】
9.已知函数
(1)写出函数的单调递减区间;
(2)设,的最小值是,最大值是,求实数的值.
第三章函数
一、基础知识
定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。
定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。
定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。
定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。
定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.
定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).
定理1互为反函数的两个函数的图象关于直线y=x对称。
定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1x2,总有f(x1)f(x2)(f(x)f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。
定义8如果实数ab,则数集{x|axb,x∈R}叫做开区间,记作(a,b),集合{x|a≤x≤b,x∈R}记作闭区间[a,b],集合{x|ax≤b}记作半开半闭区间(a,b],集合{x|a≤xb}记作半闭半开区间[a,b),集合{x|xa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].
定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。
定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。
注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。
二、方法与例题
1.数形结合法。
例1求方程|x-1|=的正根的个数.
【解】分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。
例2求函数f(x)=的最大值。
【解】f(x)=,记点P(x,x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。
因为|PA|-|PA|≤|AB|=,当且仅当P为AB延长线与抛物线y=x2的交点时等号成立。
所以f(x)max=
2.函数性质的应用。
例3设x,y∈R,且满足,求x+y.
【解】设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若ab,则f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)0,所以f(t)递增。
由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.
例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。
【解】因为f(x)是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)f(a2-1)。
又f(x)在定义域(-1,1)上递减,所以-11-aa2-11,解得0a1。
例5设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。
【解】设x∈Ik,则2k-1x≤2k+1,
所以f(x-2k)=(x-2k)2.
又因为f(x)是以2为周期的函数,
所以当x∈Ik时,f(x)=f(x-2k)=(x-2k)2.
例6解方程:(3x-1)()+(2x-3)(+1)=0.
【解】令m=3x-1,n=2x-3,方程化为
m(+1)+n(+1)=0.①
若m=0,则由①得n=0,但m,n不同时为0,所以m0,n0.
ⅰ)若m0,则由①得n0,设f(t)=t(+1),则f(t)在(0,+∞)上是增函数。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=
ⅱ)若m0,且n0。同理有m+n=0,x=,但与m0矛盾。
综上,方程有唯一实数解x=
3.配方法。
例7求函数y=x+的值域。
【解】y=x+=[2x+1+2+1]-1
=(+1)-1≥-1=-.
当x=-时,y取最小值-,所以函数值域是[-,+∞)。
4.换元法。
例8求函数y=(++2)(+1),x∈[0,1]的值域。
【解】令+=u,因为x∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。
所以该函数值域为[2+,8]。
5.判别式法。
例9求函数y=的值域。
【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0.①
当y1时,①式是关于x的方程有实根。
所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.
又当y=1时,存在x=0使解析式成立,
所以函数值域为[,7]。
6.关于反函数。
例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。
【证明】设x1x2,且y1=f-1(x1),y2=f-1(x2),则x1=f(y1),x2=f(y2),若y1≥y2,则因为f(x)在(-∞,+∞)上递增,所以x1≥x2与假设矛盾,所以y1y2。
即y=f-1(x)在(-∞,+∞)递增。
例11设函数f(x)=,解方程:f(x)=f-1(x).
【解】首先f(x)定义域为(-∞,-)∪[-,+∞);其次,设x1,x2是定义域内变量,且x1x2-;=0,
所以f(x)在(-∞,-)上递增,同理f(x)在[-,+∞)上递增。
在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).
若xy,设xy,则f(x)=yf(y)=x,矛盾。
同理若xy也可得出矛盾。所以x=y.
即f(x)=x,化简得3x5+2x4-4x-1=0,
即(x-1)(3x4+5x3+5x2+5x+1)=0,
因为x≥0,所以3x4+5x3+5x2+5x+10,所以x=1.
三、基础训练题
1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。
2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)]=f(x)的映射有_______个。
3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。
4.函数y=f(x)的值域为[],则函数g(x)=f(x)+的值域为_______。
5.已知f(x)=,则函数g(x)=f[f(x)]的值域为_______。
6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。
7.设y=f(x)在定义域(,2)内是增函数,则y=f(x2-1)的单调递减区间为_______。
8.若函数y=(x)存在反函数y=-1(x),则y=-1(x)的图象与y=-(-x)的图象关于直线_______对称。
9.函数f(x)满足=1-,则f()=_______。
10.函数y=,x∈(1,+∞)的反函数是_______。
11.求下列函数的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=
12.已知定义在R上,对任意x∈R,f(x)=f(x+2),且f(x)是偶函数,又当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,求f(x)的解析式。
四、高考水平训练题
1.已知a∈,f(x)定义域是(0,1],则g(x)=f(x+a)+f(x-a)+f(x)的定义域为_______。
2.设0≤a1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。
3.映射f:{a,b,c,d}→{1,2,3}满足10f(a)f(b)f(c)f(d)20,这样的映射f有_______个。
4.设函数y=f(x)(x∈R)的值域为R,且为增函数,若方程f(x)=x解集为P,f[f(x)]=x解集为Q,则P,Q的关系为:P_______Q(填=、、)。
5.下列函数是否为奇函数:(1)f(x)=(x-1);(2)g(x)=|2x+1|-|2x-1|;(3)(x)=;(4)y=
6.设函数y=f(x)(x∈R且x0),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-)≤0的解集为_______。
7.函数f(x)=,其中P,M为R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},给出如下判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M,则f(P)∩f(M);③若P∪M=R,则f(P)∪f(M)=R;④若P∪MR,则f(P)∪f(M)R.其中正确的判断是_______。
8.函数y=f(x+1)的反函数是y=f-1(x+1),并且f(1)=3997,则f(1998)=_______。
9.已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3。求f(x)的解析式。
10.设a0,函数f(x)定义域为R,且f(x+a)=,求证:f(x)为周期函数。
11.设关于x的方程2x2-tx-2=0的两根为α,β(αβ),已知函数f(x)=,(1)求f(α)、f(β);(2)求证:f(x)在[α,β]上是增函数;(3)对任意正数x1,x2,求证:2|α-β|.
五、联赛一试水平训练题
1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________.
2.若a0,a1,F(x)是奇函数,则G(x)=F(x)是________(奇偶性).
3.若=x,则下列等式中正确的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.
4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________.
5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=________.
6.函数f(x)=的单调递增区间是________.
7.函数f(x)=的奇偶性是:________奇函数,________偶函数(填是,非)。
8.函数y=x+的值域为________.
9.设f(x)=,
对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},试求V(a)的最小值。
10.解方程组:(在实数范围内)
11.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有n≤f(n)≤
六、联赛二试水平训练题
1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0,f(x)=xf;(2)对所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).
2.设f(x)对一切x0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x0,f(x)f=1,试求f(1).
3.f:[0,1]→R满足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)当x,y,x+y∈[0,1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx.
4.试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x0,y0)的最小值。
5.对给定的正数p,q∈(0,1),有p+q1≥p2+q2,试求f(x)=(1-x)+在[1-q,p]上的最大值。
6.已知f:(0,1)→R且f(x)=.
当x∈时,试求f(x)的最大值。
7.函数f(x)定义在整数集上,且满足f(n)=,求f(100)的值。
8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角后不变。(1)求证:方程f(x)=x恰有一个解;(2)试给出一个具有上述性质的函数。
9.设Q+是正有理数的集合,试构造一个函数f:Q+→Q+,满足这样的条件:f(xf(y))=x,y∈Q+.
老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们知道适合教案课件的范文有哪些呢?下面是小编帮大家编辑的《2018年人教A版高中数学必修三第三章第1节第1课时随机事件的概率教学案》,欢迎您参考,希望对您有所助益!
第1课时随机事件的概率
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P108~P112,回答下列问题.
(1)客观世界中,有些事件的发生是偶然的,有些事件的发生是必然的,有些事件可能发生也可能不发生,若把这些事件分类,可分为哪几类?
提示:根据这些事件可能发生与否,可将事件分为必然事件、不可能事件、随机事件.
(2)教材所做的抛掷一枚硬币的试验中,每个同学所得试验结果是否一致?
提示:不一致,因为正面朝上这个事件是随机事件,可能发生也可能不发生.
(3)事件A发生的频率fn(A)是不是不变的?事件A的概率P(A)是不是不变的?它们之间有什么区别与联系?
提示:频率是变化的,而概率是不变的,频率因试验的不同而不同,概率则不然,概率是频率的稳定值,是不随着频率的变化而变化的.
2.归纳总结,核心必记
(1)事件的概念与分类
事件确定事件不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件
(2)频数与频率
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=nAn为事件A出现的频率.
(3)概率
①含义:概率是度量随机事件发生的可能性大小的量.
②与频率联系:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
[问题思考]
(1)事件的分类是确定的吗?
提示:事件的分类是相对于条件来讲的,在不同的条件下,必然事件、随机事件、不可能事件可以相互转化.
(2)频率和概率可以相等吗?
提示:可以相等.但因为每次实验的频率是多少是不固定,而概率是固定的,故一般是不相等的,但有可能是相等的.
(3)频率与概率有什么区别与联系?
提示:
频率概率
区别频率反映了一个随机事件发生的频繁程度,是随机的概率是一个确定的值,它反映随机事件发生的可能性的大小
联系频率是概率的估计值,随着试验次数的增加,
频率会越来越接近概率
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)事件的分类:;
(2)概率的含义:;
(3)概率与频率的联系:.
观察下列几幅图片:
事件一:常温下石头在一天内能被风化.
事件二:木柴燃烧产生热量.
事件三:射击运动员射击一次中十环.
[思考]以上三个事件一定发生吗?
名师指津:事件一在常温下不可能发生,是不可能事件;事件二一定发生,是必然事件;事件三可能发生,也可能不发生,是随机事件.
?讲一讲
1.指出下列事件是必然事件、不可能事件还是随机事件:
(1)中国体操运动员将在下届奥运会上获得全能冠军.
(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.
(3)若x∈R,则x2+1≥1.
(4)掷一枚骰子两次,朝上面的数字之和小于2.
[尝试解答]由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.
判断事件类型的步骤
要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.
?练一练
1.(2016西南师大附中检测)下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②掷两枚骰子,所得点数之和为9;③x2≥0(x∈R);④方程x2-3x+5=0有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军,其中随机事件的个数为()
A.1B.2C.3D.4
解析:选B在所给条件下,①是必然事件;②是随机事件;③是必然事件;④是不可能事件;⑤是随机事件.
小明抛掷一枚硬币100次,出现正面朝上48次.
[思考1]你能计算出正面朝上的频率吗?
提示:正面朝上的频率为0.48.
[思考2]抛掷一枚硬币一次出现正面朝上的概率是多少?
提示:正面朝上的概率为0.5.
[思考3]随机事件的频率与概率之间有什么关系?
名师指津:辨析频率与概率:
(1)频率本身是随机的,是一个变量,在试验前不能确定,做同样次数的重复试验得到的事件发生的频率可能会不同.比如,全班每个人都做了10次抛掷硬币的试验,但得到正面朝上的频率可以是不同的.
(2)概率是一个确定的数,是客观存在的,与每次试验无关.比如,如果一枚硬币是质地均匀的,则抛掷硬币一次出现正面朝上的概率是0.5,与做多少次试验无关.
(3)频率是概率的近似值,随着试验次数的增加,频率会越来越接近于概率,在实际问题中,通常事件发生的概率未知,常用频率作为它的估计值.
?讲一讲
2.某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:
射击次数n100120150100150160150
击中飞碟数nA819512081119127121
(1)求各次击中飞碟的频率.(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
[尝试解答](1)计算nAn得各次击中飞碟的频率依次约为0.810,0.792,0.800,0.810,0.793,0.794,0.807.
(2)由于这些频率非常地接近0.800,且在它附近摆动,所以运动员击中飞碟的概率约为0.800.
利用频率估计概率的步骤
(1)依次计算各个频率值;
(2)观察各个频率值的稳定值即为概率的估计值,有时也可用各个频率的中位数来作为概率的估计值.
?练一练
2.国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:
抽取球数目5010020050010002000
优等品数目45921944709541902
优等品频率
(1)计算表中优等品的各个频率.
(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?
解:(1)如下表
抽取球数目5010020050010002000
优等品数目45921944709541902
优等品频率0.90.920.970.940.9540.951
(2)根据频率与概率的关系,可以认为从这批产品中任取一个乒乓球,质量检测为优等品的概率约是0.95.
?讲一讲
3.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
[思路点拨]根据日常生活的经验按一定的顺序逐个列出全部结果.
[尝试解答](1)当x=1时,y=2,3,4;当x=2时,y=1,3,4;当x=3时,y=1,2,4;当x=4时,y=1,2,3.
因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).
(2)记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}.
列举试验所有可能结果的方法
(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件;
(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树形图、列表等方法解决.
?练一练
3.袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.
(1)从中任取1球;
(2)从中任取2球.
解:(1)条件为:从袋中任取1球.结果为:红、白、黄、黑4种.
(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,结果为:(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)6种.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解概率的含义,了解频率与概率的区别与联系,了解随机事件发生的不确定性和频率的稳定性,难点是能列出一些简单试验的所有可能结果.
2.本节课要重点掌握的规律方法
(1)会判断事件的类型,见讲1.
(2)掌握利用频率估计概率的步骤,见讲2.
(3)会列举试验所有结果的方法,见讲3.
3.本节课的易错点有两个:
(1)混淆频率与概率概念,如讲2.
(2)列举试验结果时易出现重复或遗漏,如讲3.
课下能力提升(十五)
[学业水平达标练]
题组1事件的分类
1.下列事件中,是随机事件的有()
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③发射一颗炮弹,命中目标;
④检查流水线上一件产品是合格品还是次品.
A.1个B.2个
C.3个D.4个
解析:选C当a为整数时,a+1一定为整数,是必然事件,其余3个为随机事件.
2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()
A.3个都是正品B.至少有1个是次品
C.3个都是次品D.至少有1个是正品
解析:选D任意抽取3件的可能情况是:3个正品;2个正品1个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3种可能的结果中,都至少有1个正品,所以至少有1个是正品是必然发生的,即必然事件应该是“至少有1个是正品”.
3.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
①如果a,b都是实数,那么a+b=b+a;
②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;
③没有水分,种子发芽;
④某电话总机在60秒内接到15次传呼;
⑤在标准大气压下,水的温度达到50℃时沸腾;
⑥同性电荷,相互排斥.
解:由实数运算性质知①恒成立,是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽;标准大气压下,水的温度达到50℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4,也可能取不到4;电话总机在60秒内可能接到15次传呼也可能不是15次.②④是随机事件.
题组2随机事件的频率与概率
4.(2016洛阳检测)下列说法正确的是()
A.任何事件的概率总是在(0,1]之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定
解析:选C由概率与频率的有关概念知,C正确.
5.给出下列3种说法:
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是nm=37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是()
A.0B.1C.2D.3
解析:选A由频率与概率之间的联系与区别知,①②③均不正确.
6.从存放号码分别为1,2,3,…,10的卡片的盒里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:
卡片号码12345678910
取到次数1785769189129
取到号码为奇数的频率为________.
解析:取到奇数号码的次数为58,故取到号码为奇数的频率为58100=0.58.
答案:0.58
7.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:
时间范围1年内2年内3年内4年内
新生婴儿数n554496071352017190
男婴数nA2883497069948892
(1)计算男婴出生的频率(保留4位小数);
(2)这一地区男婴出生的频率是否稳定在一个常数上?
解:(1)男婴出生的频率依次约为:0.5200,0.5173,0.5173,0.5173.
(2)各个频率均稳定在常数0.5173上.
8.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:
成绩人数
90分以上43
80分~89分182
70分~79分260
60分~69分90
50分~59分62
50分以下8
经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60分~69分;(3)60分以下.
解:总人数为43+182+260+90+62+8=645.
修李老师的高等数学课的学生考试成绩在90分以上,
60分~69分,60分以下的频率分别为:
43645≈0.067,90645≈0.140,62+8645≈0.109.
∴用以上信息可以估计出王小慧得分的概率情况:
(1)“得90分以上”记为事件A,则P(A)=0.067.
(2)“得60分~69分”记为事件B,则P(B)=0.140.
(3)得“60分以下”记为事件C,则P(C)=0.109.
题组3试验结果分析
9.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.
(1)写出这个试验的所有可能结果;
(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.
解:(1)试验所有结果:a1,a2;a1,b1;a2,b1;a2,a1;b1,a1;b1,a2.共6种.
(2)事件A对应的结果为:a1,b1;a2,b1;b1,a1;b1,a2.
10.指出下列试验的结果:
(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;
(2)从1,3,6,10四个数中任取两个数(不重复)作差.
解:(1)结果:红球,白球;红球,黑球;白球,黑球.
(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,
1-10=-9,10-1=9,3-6=-3,6-3=3,
3-10=-7,10-3=7,6-10=-4,10-6=4.
即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.
[能力提升综合练]
1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()
A.374副B.224.4副
C.不少于225副D.不多于225副
解析:选C根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C.
2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的()
A.概率为35B.频率为35
C.频率为6D.概率接近0.6
解析:选B事件A={正面朝上}的概率为12,因为试验的次数较少,所以事件的频率为35,与概率值相差太大,并不接近.故选B.
3.(2016深圳调研)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是()
A.不可能事件
B.必然事件
C.可能性较大的随机事件
D.可能性较小的随机事件
解析:选D掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.
4.“连续掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有()
A.6种B.12种
C.24种D.36种
解析:选D试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.
5.(2016济南检测)如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.
解析:取了10次有9个白球,则取出白球的频率是910,估计其概率约是910,那么取出黑球的概率约是110,因为取出白球的概率大于取出黑球的概率,所以估计袋中数量多的是白球.
答案:白球
6.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:
分组频数
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54]2
合计100
(1)请作出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
解:(1)频率分布表如下表.
分组频数频率
[1.30,1.34)40.04
[1.34,1.38)250.25
[1.38,1.42)300.30
[1.42,1.46)290.29
[1.46,1.50)100.10
[1.50,1.54]20.02
合计1001.00
频率分布直方图如图所示.
(2)纤度落在[1.38,1.50)中的频数是30+29+10=69,
则纤度落在[1.38,1.50)中的频率是69100=0.69,
所以估计纤度落在[1.38,1.50)中的概率为0.69.
纤度小于1.40的频数是4+25+12×30=44,
则纤度小于1.40的频率是44100=0.44,
所以估计纤度小于1.40的概率是0.44.
文章来源:http://m.jab88.com/j/50025.html
更多