88教案网

俗话说,凡事预则立,不预则废。作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师在教学期间更好的掌握节奏。教案的内容要写些什么更好呢?为满足您的需求,小编特地编辑了“简谐运动”,仅供参考,大家一起来看看吧。

第1节简谐运动测试1
1.做简谐运动的质点,先后经过同一点时,下列物理量哪些是不同的()
A.速度B.加速度C.位移D.动能
2.某个弹簧振子在水平方向上做简谐运动,下列说法中正确的是()
A.该振子的加速度和位移大小成正比,方向相反
B.该振子的加速度和位移大小成正比,方向相同
C.该振子做非匀变速运动
D.该振子做匀变速运动
3.弹簧振子做简谐运动时,下列说法中正确的是()
A.若位移为负值,则速度一定为正值
B.振子通过平衡位置时,速度为零,加速度最大
C.振子每次通过平衡位置时,加速度相同,速度也相同
D.振子通过同一位置时,速度不一定相同,但加速度一定相同
4.如图,一水平弹簧振子,O为平衡位置,振子在B、C之间做简谐运动,设向右为正方向,则振子()M.jaB88.COm

A.由C向O运动时,位移为正值,速度为正值,加速度为正值
B.由O向B运动时,位移为正值,速度为正值,加速度为负值
C.由B向O运动时,位移为负值,速度为正值,加速度为负值
D.由O向C运动时,位移为负值,速度为负值,加速度为正值
5.水平方向做简谐运动的物体偏离平衡位置的位移为X,速度为V,加速度为a,则()
A.X与V同向时,物体加速B.X与V反向时,物体加速
C.V与a同向时,位移变大,D.V与a反向时,位移变大
6.关于水平方向上做简谐运动的弹簧振子的位移,加速度和速度间的关系,下列说法中正确的是()
A.位移减小时,加速度减小,速度增大
B.位移的方向总是跟加速度的方向相反,跟速度的方向相同
C.振子的运动方向指向平衡位置时,速度的方向跟位移方向相同
D.振子的运动方向改变时,加速度的方向也改变
7.如图,若水平弹簧振子在B、C间做简谐运动,O点为平衡位置,则()
A.振子在经过O点时速度最大,回复力也最大
B.振子在经过O点时速度最大,回复力为零
C.振子在由C点向O点运动的过程中,回复力逐渐减小,
加速度却逐渐增大
D.振子在由O点向B点运动的过程中,弹性势能逐渐增大,加速度却逐渐减小
8.若做简谐运动的弹簧振子的振幅是A,最大加速度的值为am,则在位移X=A/2处振子的加速度值a=。
9.振子质量是0.2kg的弹簧振子在水平方向上做简谐运动,当它运动到平衡位置左侧2cm时,受到的回复力是4N,当它运动到平衡位置右侧4cm时,它的加速度大小和方向分别是()
A.20m/s2,向右B.20m/s2,向左C.40m/s2,向左D.40m/s2,向右
※10.如图,一水平平台在竖直方向上做简谐运动,一物体置于平台上一起振动,当平台振动到什么位置时,物体对平台的压力最小?()
A.当平台振动到最低点时
B.当平台振动到最高点时
C.当平台向上振动经过平衡位置时
D.当平台向下振动经过平衡位置时
11.水平弹簧振子做简谐运动时,以下说法正确的是()
A.振子通过平衡位置时,回复力一定为零
B.振子减速度运动时,加速度在减小
C.振子向平衡位置运动时,加速度与速度方向相反
D.振子远离平衡位置运动时,加速度与速度方向相反

答案:
题号12345
答案AACDBDBD
题号678910
答案AB1/2CB
题号11
答案AD

相关阅读

§9—1简谐运动


§9.1简谐振动
教学目标:
(1)理解简谐振动的判断,掌握全过程的特点;
(2)理解简谐振动方程的物理含义与应用;
能力目标:
(1)培养对周期性物理现象观察、分析;
(2)训练对物理情景的理解记忆;
教学过程:
(一)、简谐振动的周期性:周期性的往复运动
(1)一次全振动过程:基本单元
平衡位置O:周期性的往复运动的对称中心位置
振幅A:振动过程振子距离平衡位置的最大距离
(2)全振动过程描述:
周期T:完成基本运动单元所需时间
T=2π
频率f:1秒内完成基本运动单元的次数
T=
位移S:以平衡位置O为位移0点,在全振动过程中始终从平衡位置O点指向振子所在位置
速度V:物体运动方向
(二)、简谐振动的判断:振动过程所受回复力为线性回复力
(F=-KX)K:简谐常量
X:振动位移
简谐振动过程机械能守恒:KA2=KX2+mV2=mVo2
(三)、简谐振动方程:
等效投影:匀速圆周运动(角速度ω=π)
位移方程:X=Asinωt
速度方程:V=Vocosωt
加速度:a=sinωt
线性回复力:F=KAsinωt
上述简谐振动物理参量方程反映振动过程的规律性
简谐振动物理参量随时间变化关系为正余弦图形
课堂思考题:(1)简谐振动与一般周期性运动的区别与联系是什么?
(2)如何准确描述周期性简谐振动?
(3)你知道的物理等效性观点应用还有哪些?
(四)、典型问题:
(1)简谐振动全过程的特点理解类
例题1、一弹簧振子,在振动过程中每次通过同一位置时,保持相同的物理量有()
A速度B加速度C动量D动能
例题2、一弹簧振子作简谐振动,周期为T,()
A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍;
B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反;
C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动加速度一定相等;
D.若Δt=T/2,则在t时刻和(t+Δt)时刻弹簧的长度一定相等
同步练习
练习1、一平台沿竖直方向作简谐运动,一物体置于振动平台上随台一起运动.当振动平台处于什么位置时,物体对台面的正压力最小
A.当振动平台运动到最低点
B.当振动平台运动到最高点时
C.当振动平台向下运动过振动中心点时
D.当振动平台向上运动过振动中心点时
练习2、水平方向做简谐振动的弹簧振子其周期为T,则:
A、若在时间Δt内,弹力对振子做功为零,则Δt一定是的整数倍
B、若在时间Δt内,弹力对振子做功为零,则Δt可能小于
C、若在时间Δt内,弹力对振子冲量为零,则Δt一定是T的整数倍
D、若在时间Δt内,弹力对振子冲量为零,则Δt可能小于
练习3、一个弹簧悬挂一个小球,当弹簧伸长使小球在位置时处于平衡状态,现在将小球向下拉动一段距离后释放,小球在竖直方向上做简谐振动,则:
A、小球运动到位置O时,回复力为零;
B、当弹簧恢复到原长时,小球的速度最大;
C、当小球运动到最高点时,弹簧一定被压缩;
D、在运动过程中,弹簧的最大弹力大于小球的重力;
(2)简谐振动的判断证明
例题、在弹簧下端悬挂一个重物,弹簧的劲度为k,重物的质量为m。重物在平衡位置时,弹簧的弹力与重力平衡,重物停在平衡位置,让重物在竖直方向上离开平衡位置,放开手,重物以平衡位置为中心上下振动,请分析说明是否为简谐振动,振动的周期与何因素有关?
解析:当重物在平衡位置时,假设弹簧此时伸长了x0,
根据胡克定律:F=kx由平衡关系得:mg=kx0(1)
确定平衡位置为位移的起点,当重物振动到任意位置时,此时弹簧的形变量x也是重物该时刻的位移,此时弹力F1=kx
由受力分析,根据牛顿第二定律F=Ma得:F1–mg=ma(2)
由振动过程中回复力概念得:F回=F1–mg(3)
联立(1)、(3)得:F回=kx-kx0=k(x-x0)
由此可得振动过程所受回复力是线性回复力即回复力大小与重物运动位移大小成正比,其方向相反,所以是简谐振动。
由(2)得:a=-(x-x0),
结合圆周运动投影关系式:a=-ω2(x-x0)得:ω2=
由ω=π得:T=2π此式说明该振动过程的周期只与重物质量的平方根成正比、跟弹簧的劲度的平方根成反比,跟振动幅度无关。
同步练习:
用密度计测量液体的密度,密度计竖直地浮在液体中。如果用手轻轻向下压密度计后,放开手,它将沿竖直方向上下振动起来。试讨论密度计的振动是简谐振动吗?其振动的周期与哪些因素有关?
(3)简谐振动方程推导与应用
例题:做简谐振动的小球,速度的最大值vm=0.1m/s,振幅A=0.2m。若从小球具有正方向的速度最大值开始计时,求:(1)振动的周期(2)加速度的最大值(3)振动的表达式
解:根据简谐振动过程机械能守恒得:KA2=mVm2
=Vm2/A2=0.25由T=2π=4π
a=-A=0.05(m/s2)由ω=π=0.5由t=0,速度最大,位移为0则
Acosφ=0v=-ωAsinφ则φ=-π/2即有x=0.2cos(0.5t–0.5π)

简谐运动的描述


11.2简谐运动的描述
【教学目标】
(一)知识与技能
1、知道振幅、周期和频率的概念,知道全振动的含义。
2、了解初相和相位差的概念,理解相位的物理意义。
3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。
(二)过程与方法
1、在学习振幅、周期和频率的过程中,培养学生的观察能力和解决实际问题的能力。
2、学会从相位的角度分析和比较两个简谐运动。
(三)情感、态度与价值观
1、每种运动都要选取能反映其本身特点的物理量来描述,使学生知道不同性质的运动包含各自不同的特殊矛盾。
2、通过对两个简谐运动的超前和滞后的比较,学会用相对的方法来分析问题。
【教学重点】简谐运动的振幅、周期和频率的概念;相位的物理意义。
【教学难点】
1、振幅和位移的联系和区别、周期和频率的联系和区别。
2、对全振动概念的理解,对振动的快慢和振动物体运动的快慢的理解。
3、相位的物理意义。
【教学方法】分析类比法、讲解法、实验探索法、多媒体教学。
【教学用具】
CAI课件、劲度系数不同的弹簧、质量不同的小球、秒表、铁架台、音叉、橡皮槌;两个相同的单摆、投影片。
【教学过程】
(一)引入新课
教师:描述匀速直线运动的物理量有位移、时间和速度;描述匀变速直线运动的物理量有时间、速度和加速度;描述匀速圆周运动的物体时,引入了周期、频率、角速度等能反映其本身特点的物理量。
上节课我们学习了简谐运动,简谐运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等能反映其本身特点的物理量。本节课我们就来学习描述简谐运动的几个物理量。
(二)进行新课
1.振幅
如果我们要乘车,我想大家都愿意坐小汽车,而不坐拖拉机,因为拖拉机比小汽车颠簸得厉害。
演示:在铁架台上悬挂一竖直方向的弹簧振子,分别把振子从平衡位置向下拉不同的距离,让振子振动。
现象:①两种情况下,弹簧振子振动的范围大小不同;②振子振动的强弱不同。
在物理学中,我们用振幅来描述物体的振动强弱。
(1)物理意义:振幅是描述振动强弱的物理量。
将音叉的下部与讲桌接触,用橡皮槌敲打音叉,一次轻敲,一次重敲,听它发出的声音的强弱,比较后,加深对振幅的理解。
(2)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
(3)单位:在国际单位制中,振幅的单位是米(m)。
(4)振幅和位移的区别
①振幅是指振动物体离开平衡位置的最大距离;而位移是振动物体所在位置与平衡位置之间的距离。
②对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的。
③位移是矢量,振幅是标量。
④振幅等于最大位移的数值。
2、周期和频率
(1)全振动
(用多媒体展示一次全振动的四个阶段)
从O点开始,一次全振动的完整过程为:O→A→O→A′→O。从A点开始,一次全振动的完整过程为:A→O→A′→O→A。从A'点开始,一次全振动的完整过程为:A′→O→A→O→A′。
在判断是否为一次全振动时不仅要看是否回到了原位置,而且到达该位置的振动状态(速度)也必须相同,才能说完成了一次全振动。只有物体振动状态再次恢复到与起始时刻完全相同时,物体才完成一次全振动。
振动物体以相同的速度相继通过同一位置所经历的过程,也就是连续的两次位置和振动状态都相同时所经历的过程,叫做一次全振动。
一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重复。
(2)周期和频率
演示:在两个劲度系数不同的弹簧下挂两个质量相同的小球,让这两个弹簧振子以相同的振幅振动,观察到振子振动的快慢不同。
为了描述简谐运动的快慢,引入了周期和频率。
①周期:做简谐运动的物体完成一次全振动所需的时间,叫做振动的周期,单位:s。
②频率:单位时间内完成的全振动的次数,叫频率,单位:Hz,1Hz=1s-1。
③周期和频率之间的关系:T=1f
④研究弹簧振子的周期
问题:猜想弹簧振子的振动周期可能由哪些因素决定?
演示:两个不同的弹簧振子(弹簧不同,振子小球质量也不同),学生观察到:两个弹簧振子的振动不同步,说明它们的周期不相等。
猜想:影响弹簧振子周期的因素可能有:振幅、振子的质量、弹簧的劲度系数。
注意事项:
a.介绍秒表的正确读数及使用方法。
b.应选择振子经过平衡位置的时刻作为开始计时的时刻。
c.振动周期的求解方法:T=tn,t表示发生n次全振动所用的总时间。
d.给学生发秒表,全班同学同时测讲台上演示的弹簧振子的振动周期。
实验验证:弹簧一端固定,另一端系着小球,让小球在竖直方向上振动。
实验一:用同一弹簧振子,质量不变,振幅较小与较大时,测出振动的周期T1和T1′,并进行比较。
结论:弹簧振子的振动周期与振幅大小无关。
实验二:用同一弹簧,拴上质量较小和较大的小球,在振幅相同时,分别测出振动的周期T2和T2′,并进行比较。
结论:弹簧振子的振动周期与振子的质量有关,质量较小时,周期较小。
实验三:保持小球的质量和振幅不变,换用劲度系数不同的弹簧,测出振动的周期T3和T3′,并进行比较。
结论:弹簧振子的振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小。
通过上述实验,我们得到:弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与振幅无关。
(简谐运动的周期公式T=2πmk,式中m为振子的质量,k为比例常数)
⑤固有周期和固有频率
对一个确定的振动系统,振动的周期和频率只与振动系统本身有关,所以把周期和频率叫做固有周期和固有频率。
3.相位
(观察和比较两个摆长相等的单摆做简谐运动的情形)
演示:将并列悬挂的两个等长的单摆(它们的振动周期和频率相同),向同一侧拉起相同的很小的偏角同时释放,让它们做简谐运动。
现象:两个简谐运动在同一方向同时达到位移的最大值,也同时同方向经过平衡位置,两者振动的步调一致。
对于同时释放的这两个等长单摆,我们说它们的相位相同。
演示:将两个单摆拉向同一侧拉起相同的很小的偏角,但不同时释放,先把第一个放开,当它运动到平衡位置时再放开第二个,让两者相差1/4周期,让它们做简谐运动。
现象:两者振动的步调不再一致了,当第一个到达另一侧的最高点时,第二个小球又回到平衡位置,而当第二个摆球到达另一方的最高点时,第一个小球又已经返回平衡位置了。与第一个相比,第二个总是滞后1/4周期,或者说总是滞后1/4全振动。
对于不同时释放的这两个等长单摆,我们说它们的相位不相同。
要详尽地描述简谐运动,只有周期(或频率)和振幅是不够的,在物理学中我们用不同的相位来描述简谐运动在一个全振动中所处的不同阶段。
相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
4.简谐运动的表达式
(1)简谐运动的振动方程
既然简谐运动的位移和时间的关系可以用正弦曲线或余弦曲线来表示,那么若以x代表质点对于平衡位置的位移,t代表时间,根据三角函数知识,x和t的函数关系可以写成
x=Asin(ωt+)
公式中的A代表振动的振幅,ω叫做圆频率,它与频率f之间的关系为:ω=2πf;公式中的(ωt+)表示简谐运动的相位,t=0时的相位叫做初相位,简称初相。
(2)两个同频率简谐运动的相位差
设两个简谐运动的频率相同,则据ω=2πf,得到它们的圆频率相同,设它们的初相分别为1和2,它们的相位差就是
(ωt+2)-(ωt+)=2-1
讨论:
①一个物体运动时其相位变化多少就意味着完成了一次全振动?
(相位每增加2π就意味着发生了一次全振动)
②甲和乙两个简谐运动的相位差为3π/2,意味着什么?
(甲和乙两个简谐运动的相位差为3π/2,意味着乙总是比甲滞后3/2个周期或3/2次全振动)
(3)相位的应用
【例题1】两个简谐振动分别为
x1=4asin(4πbt+π)
和x2=2asin(4πbt+π)
求它们的振幅之比、各自的频率,以及它们的相位差。
解析:据x=Asin(ωt+)得到:A1=4a,A2=2a。
又ω=4πb及ω=2πf得:f=2b
它们的相位差是:
【例题2】如图所示是A、B两个弹簧振子的振动图象,求它们的相位差。

解析:这两个振动的周期相同,所以它们有确定的相位差,从图中可以看出,B的振动比A滞后1/4周期,所以两者的相位差是
Δ=
巩固练习:某简谐运动的位移与时间关系为:x=0.1sin(100πt+)cm,由此可知该振动的振幅是______cm,频率是Hz,t=0时刻振动物体的位移与规定正方向______(填“相同”或“相反”),t=时刻振动物体的位移与规定正方向______(填“相同”或“相反”)。
(参考答案:0.1;50;相同;相反)
(三)课堂总结、点评
本节课学习了描述振动的物理量——振幅、周期、频率和相位。
当振动物体以相同的速度相继通过同一位置所经历的过程就是一次全振动,一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重复。振幅是描述振动强弱的物理量;周期和频率都是用来表示振动快慢的物理量。
相位是表示振动步调的物理量,用来描述在一个周期内振动物体所处的不同运动状态。用三角函数式来表示简谐运动,其表达式为:x=Asin(ωt+),其中x代表质点对于平衡位置的位移,t代表时间,ω叫做圆频率,ωt+表示简谐运动的相位。
两个具有相同圆频率ω的简谐运动,它们的相位差是:
(ωt+2)-(ωt+)=2-1
(四)课余作业
完成P11“问题与练习”的题目。
阅读P10科学漫步中的短文。
附:教材分析
本节学习了描述简谐运动的几个物理量,是进一步认识简谐运动的基础课,同时也为后续课程交流电、电磁振荡等知识的学习打下基础。
由于相位的概念比较抽象,在教学中,能让学生理解相位的物理意义,识别位移方程中各量的含义就可以了.对于基础较好的学生,教师也可以介绍参考圆的方法,以帮助学生更深入地理解相位的概念。

《简谐运动的描述》教学案例分析


《简谐运动的描述》教学案例分析
1.理解振幅、周期和频率的概念,知道全振动的含义。
2.了解初相位和相位差的概念,理解相位的物理意义。
3.了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。
4.理解简谐运动图象的物理意义,会根据振动图象判断振幅、周期和频率等。
重点难点:对简谐运动的振幅、周期、频率、全振动等概念的理解,相位的物理意义。
教学建议:本节课以弹簧振子为例,在观察其振动过程中位移变化的周期性、振动快慢的特点时,引入描绘简谐运动的物理量(振幅、周期和频率),再通过单摆实验引出相位的概念,最后对比前一节得出的图象和数学表达式,进一步体会这些物理量的含义。本节要特别注意相位的概念。
导入新课:你有喜欢的歌手吗?我们常常在听歌时会评价,歌手韩红的音域宽广,音色嘹亮圆润;歌手王心凌的声音甜美;歌手李宇春的音色沙哑,独具个性……但同样的歌曲由大多数普通人唱出来,却常常显得干巴且单调,为什么呢?这些是由音色决定的,而音色又与频率等有关。
1.描述简谐运动的物理量
(1)振幅
振幅是振动物体离开平衡位置的①最大距离。振幅的②两倍表示的是振动的物体运动范围的大小。
(2)全振动
振子以相同的速度相继通过同一位置所经历的过程称为一次③全振动,这一过程是一个完整的振动过程,振动质点在这一振动过程中通过的路程等于④4倍的振幅。
(3)周期和频率
做简谐运动的物体,完成⑤一次全振动的时间,叫作振动的周期;单位时间内完成⑥全振动的次数叫作振动的频率。在国际单位制中,周期的单位是⑦秒,频率的单位是⑧赫兹。用T表示周期,用f表示频率,则周期和频率的关系是⑨f=。
(4)相位
在物理学中,我们用不同的⑩相位来描述周期性运动在各个时刻所处的不同状态。
2.简谐运动的表达式
(1)根据数学知识,xOy坐标系中正弦函数图象的表达式为y=Asin(ωx+φ)。
(2)简谐运动中的位移(x)与时间(t)关系的表达式为x=Asin(ωt+φ),其中A代表简谐运动的振幅,ω叫作简谐运动的“圆频率”,ωt+φ代表相位。
1.弹簧振子的运动范围与振幅是什么关系?
解答:弹簧振子的运动范围是振幅的两倍。
2.周期与频率是简谐运动特有的概念吗?
解答:不是。描述任何周期性过程,都可以用这两个概念。
3.如果两个振动存在相位差,它们振动步调是否相同?
解答:不同。
主题1:振幅
问题:(1)同一面鼓,用较大的力敲鼓面和用较小的力敲鼓面,鼓面的振动有什么不同?听上去感觉有什么不同?
(2)根据(1)中问题思考振幅的物理意义是什么?
解答:(1)用较大的力敲,鼓面的振动幅度较大,听上去声音大;反之,用较小的力敲,鼓面的振动幅度较小,听上去声音小。
(2)振幅是描述振动强弱的物理量,振幅的大小对应着物体振动的强弱。
知识链接:简谐运动的振幅是物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量,它不同于简谐运动的位移。
主题2:全振动、周期和频率
问题:(1)观察课本“弹簧振子的简谐运动”示意图,振子从P0开始向左运动,怎样才算完成了一次全振动?列出振子依次通过图中所标的点。
(2)阅读课本,思考并回答下列问题:周期和频率与计时起点(或位移起点)有关吗?频率越大,物体振动越快还是越慢?振子在一个周期内通过的路程和位移分别是多少?
(3)完成课本“做一做”,猜想弹簧振子的振动周期可能由哪些因素决定?假如我们能看清楚振子的整个运动过程,那么从什么位置开始计时才能更准确地测量振动的周期?为什么?
解答:(1)振子从P0出发后依次通过O、M、O、P0、M、P0的过程,就是一次全振动。
(2)周期和频率与计时起点(或位移起点)无关;频率越大,周期越小,表示物体振动得越快。振子在一个周期内通过的路程是4倍的振幅,而在一个周期内的位移是零。
(3)影响弹簧振子周期的因素可能有振子的质量、弹簧的劲度系数等;从振子经过平衡位置时开始计时能更准确地测量振动周期,因为振子经过平衡位置时速度最大,这样计时的误差最小。
知识链接:完成一次全振动,振动物体的位移和速度都回到原值(包括大小和方向),振动物体的路程是振幅的4倍。
主题3:简谐运动的表达式
问题:阅读课本有关“简谐运动的表达式”的内容,讨论下列问题。
(1)一个物体运动时其相位变化多少就意味着完成了一次全振动?
(2)若采用国际单位,简谐运动中的位移(x)与时间(t)关系的表达式x=Asin(ωt+φ)中ωt+φ的单位是什么?
(3)甲和乙两个简谐运动的频率相同,相位差为,这意味着什么?
解答:(1)相位每增加2π就意味着完成了一次全振动。
(2)ωt+φ的单位是弧度。
(3)甲和乙两个简谐运动的相位差为,意味着乙(甲)总是比甲(乙)滞后个周期或次全振动。
知识链接:频率相同的两个简谐运动,相位差为0称为“同相”,振动步调相同;相位差为π称为“反相”,振动步调相反。
1.(考查对全振动的理解)如图所示,弹簧振子以O为平衡位置在B、C间做简谐运动,则()。
A.从B→O→C为一次全振动
B.从O→B→O→C为一次全振动
C.从C→O→B→O→C为一次全振动
D.从D→C→O→B→O为一次全振动
【解析】选项A对应过程的路程为2倍的振幅,选项B对应过程的路程为3倍的振幅,选项C对应过程的路程为4倍的振幅,选项D对应过程的路程大于3倍的振幅,又小于4倍的振幅,因此选项A、B、D均错误,选项C正确。
【答案】C
【点评】要理解全振动的概念,只有振动物体的位移与速度第一次同时恢复到原值,才是完成一次全振动。
2.(考查简谐运动的振幅和周期)周期为T=2s的简谐运动,在半分钟内通过的路程是60cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为()。
A.15次,2cmB.30次,1cm
C.15次,1cmD.60次,2cm
【解析】振子完成一次全振动经过轨迹上每个位置两次(除最大位移处外),而每次全振动振子通过的路程为4个振幅。
【答案】B
【点评】一个周期经过平衡位置两次,路程是振幅的4倍。
3.图示为质点的振动图象,下列判断中正确的是()。
A.质点振动周期是8s
B.振幅是4cm
C.4s末质点的速度为负,加速度为零
D.10s末质点的加速度为正,速度为零
【解析】由振动图象可得,质点的振动周期为8s,A对;振幅为2cm,B错;4s末质点经平衡位置向负方向运动,速度为负向最大,加速度为零,C对;10s末质点在正的最大位移处,加速度为负值,速度为零,D错。
【答案】AC
【点评】由振动图象可以直接读出周期与振幅,可以判断各个时刻的速度方向与加速度方向。
4.(考查简谐运动的表达式)两个简谐运动分别为x1=4asin(4πbt+π)和x2=2asin(4πbt+π),求它们的振幅之比、各自的频率,以及它们的相位差。
【解析】根据x=Asin(ωt+φ)得:A1=4a,A2=2a,故振幅之比==2
由ω=4πb及ω=2πf得:二者的频率都为f=2b
它们的相位差:(4πbt+π)-(4πbt+π)=π,两物体的振动情况始终反相。
【答案】2∶12b2bπ
【点评】要能根据简谐运动的表达式得出振幅、频率、相位。
拓展一:简谐运动的表达式
1.某做简谐运动的物体,其位移与时间的变化关系式为x=10sin5πtcm,则:
(1)物体的振幅为多少?
(2)物体振动的频率为多少?
(3)在时间t=0.1s时,物体的位移是多少?
(4)画出该物体简谐运动的图象。
【分析】简谐运动位移与时间的变化关系式就是简谐运动的表达式,将它与教材上的简谐运动表达式进行对比即可得出相应的物理量。
【解析】简谐运动的表达式x=Asin(ωt+φ),比较题中所给表达式x=10sin5πtcm可知:
(1)振幅A=10cm。
(2)物体振动的频率f==Hz=2.5Hz。

(3)t=0.1s时位移x=10sin(5π×0.1)cm=10cm。
(4)该物体简谐运动的周期T==0.4s,简谐运动图象如图所示。
【答案】(1)10cm(2)2.5Hz(3)10cm(4)如图所示
【点拨】在解答简谐运动表达式的题目时要注意和标准表达式进行比较,知道A、ω、φ各物理量所代表的意义,还要能和振动图象结合起来。
拓展二:简谐振动的周期性和对称性

2.如图甲所示,弹簧振子以O点为平衡位置做简谐运动,从O点开始计时,振子第一次到达M点用了0.3s的时间,又经过0.2s第二次通过M点,则振子第三次通过M点还要经过的时间可能是()。
A.sB.sC.1.4sD.1.6s
【分析】题目中只说从O点开始计时,并没说明从O点向哪个方向运动,它可能直接向M点运动,也可能向远离M点的方向运动,所以本题可能的选项有两个。

【解析】如图乙所示,根据题意可知振子的运动有两种可能性,设t1=0.3s,t2=0.2s
第一种可能性:=t1+=(0.3+)s=0.4s,即T=1.6s
所以振子第三次通过M点还要经过的时间t3=+2t1=(0.8+2×0.3)s=1.4s
第二种可能性:t1-+=,即T=s
所以振子第三次通过M点还要经过的时间t3=t1+(t1-)=(2×0.3-)s=s。
【答案】AC
【点拨】解答这类题目的关键是理解简谐运动的对称性和周期性。明确振子往复通过同一点时,速度大小相等、方向相反;通过关于平衡位置对称的两点时,速度大小相等、方向相同或相反;往复通过同一段距离或通过关于平衡位置对称的两段距离时所用时间相等。另外要注意,因为振子振动的周期性和对称性会造成问题的多解,所以求解时别漏掉了其他可能出现的情况。

简谐运动图象的“新设计”


简谐运动图象的“新设计”

高二人教版《物理》(必修)教材中“简谐运动的图象”一节,主要是让学生认识简谐运动规律,而演示实验是本节课的关键。教材中的演示实验,笔者认为存在两方面不足:一是沙摆作出的图象只能平放,不便让所有的学生都观察到,且手拉木板不匀速易造成图象不规范;二是作出的图象是否确定是正弦(余弦)曲线?教材中只是说“理论研究证明”这是一条正弦曲线,究竟是什么样的理论?学生对这一问题存有疑虑。为此,我们设计了本文的演示实验,即可得到便于观察分析的稳定规范的描述简谐运动的图象,又即用实验证明单模做简谐运动时,位移随时间变化的图象确实是正弦(余弦)曲线,同时用新的设计、新的图象描述简谐运动,引导学生开拓思维,从多角度多方位去认识事物及其发展规律。

一、实验设计

1.以匀速直线运动的位移作为记录时间,描绘简谐运动图象,实验设计如图1所示。

2.以匀速圆周运动转过的角度作为记录时间,描绘简谐运动图象,实验设计如图2所示。

二、材料选择与制作

1.材料选择:物理支架、输液瓶、输液管、细塑料软管、金属重锤、红色墨水、细线、微型直流电动机、长方形木板、旧电唱机(转速可调)、圆形纸片、白纸。

2.单摆的制作:输液瓶中加入红色墨水稀释液挂在物理支架高处,在输液管上加开关控制,然后接细塑料软管(不宜过粗)作为摆线,摆线长短控制在使单摆周期与电唱机慢档匀速转动时的周期相同。摆锤要用密度大的铜(铁)质锤,中心打孔并固定一个细注射器针头与上述细塑料软管相接。单摆正常摆动后开启控制开关,稀释的红色墨水通过针头落在白纸上即可记录摆锤的运动图象。

3.在图1中,长方形木板上固定有限位槽,板的一端安装微型直流电动机拉动细线带动白纸恰能在槽内做匀速直线运动。

4.在图2中,旧电唱机转盘上放的圆形纸片可随转盘匀速转动。调节电唱机的转速使转盘转动的周期与单摆的周期相同。

三、实验操作与演示

实验1以匀速直线运动的位移作为记录时间,描绘简谐运动图象。按图1组装好器材,在白纸上作横轴调整单摆的平衡位置在此横轴上。给单摆适当振幅,摆动正常后,先开启微型电机开关,再开启输液器开关,在白纸上就得到了如图3所示的曲线,结束关闭开关。作出的图象稳定规范,可直接拿起来供学生观察。

实验2以匀速圆周运动转过的角度作为记录时间,描绘简谐运动图象。按图2组装好器材,调整电唱机转盘匀速转动的周期与单摆的周期相同,并使摆锤静止时,针头指向转盘中心。先开启电唱机开关,使转盘带动圆纸片匀速转动;给单摆适当振幅,摆动正常后开启输液器开关。所得图象是一个以单摆振幅为直径不断重复的圆,重复周期是单摆周期的一半。

四、现象分析

由图3可看出实验描绘出的简谐运动的图象与正弦(或余弦)曲线非常相似,究竟是否为正弦(或余弦)曲线,可由图4证明。图4中圆O’就是简谐运动的图象,只不过是用匀速圆周运动转过的角度来作为记录时间。设图中任意时刻t,摆锤位置在P点,以转盘中心为圆心,振幅为半径作大圆O,与图象圆O’相切于M点,连结OM即为小圆O’的直径,连结MP、OP并延长OP交大圆于点N,若假设点N为起始点,也是零时刻,单摆振幅为A,由数学关系可知:此时P点相对平衡位置的位移可表示为,由此证明简谐运动位移随时间变化的关系确实为正弦(或余弦)曲线。

五、演示效果

经过我们对教材中演示实验的改进,学生首先通过实验1直观形象地认知图象、感知规律;然后又通过实验2分析验证了规律,同时又活跃了学生的思维,开阔了学生的视野,使学生学会从多角度多方位去认识规律。

文章来源:http://m.jab88.com/j/45785.html

更多

最新更新

更多