一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生更好的消化课堂内容,帮助高中教师掌握上课时的教学节奏。高中教案的内容要写些什么更好呢?小编特地为大家精心收集和整理了“研究洛伦兹力”,仅供参考,欢迎大家阅读。
3.5研究洛伦兹力学案(粤教版选修3-1)
一、洛伦兹力的方向
1.__________________________称为洛伦兹力.
2.洛伦兹力的方向用________定则来判断:伸开____手,使大拇指跟其余四个手指_____,且处于同一________内,把手放入磁场中,让磁感线垂直穿入手心,四指指向为________的方向,那么拇指所指的方向就是________所受洛伦兹力的方向.运动的负电荷在磁场中所受的洛伦兹力,方向跟沿相同方向运动的正电荷所受的力的方向________.
二、洛伦兹力的大小
安培力可以看作是大量运动电荷所受________的宏观表现,当电荷在________的方向上运动时,磁场对运动电荷的洛伦兹力f=______.
一、洛伦兹力的方向
[问题情境]
图1
太阳发射出的带电粒子以300~1000km/s的速度扫过太阳系,形成“太阳风”(如图1所示).这种巨大的辐射经过地球时,为什么不能直射地球?为什么会在地球两极形成绚丽多彩如同梦幻般的极光?
1.什么是洛伦兹力?
2.通过课本中的演示实验,我们得出什么结论?
3.用左手定则判断洛伦兹力方向和用左手定则判断安培力方向时,左手的用法相同吗?
[要点提炼]
1.________电荷在磁场中所受的作用力称为洛伦兹力.
2.洛伦兹力的方向可用________定则来判断:伸开________手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向________运动的方向,这时拇指所指的方向就是运动的________电荷在磁场中所受洛伦兹力的方向.
3.运动的负电荷在磁场中所受的洛伦兹力方向为_____________________________
________________________________________________________________________.
[问题延伸]
由左手定则可知:洛伦兹力的方向与运动电荷的速度方向__________,所以洛伦兹力对带电粒子__________.
二、洛伦兹力的大小
[问题情境]
1.洛伦兹力和安培力的关系是怎样的?
2.洛伦兹力的大小如何确定?
图2
3.根据图2回答“速度选择器”是如何选择速度的?
[要点提炼]
1.当v⊥B时洛伦兹力计算式为f=__________.
2.当v与B成θ角时,洛伦兹力的计算式为f=qvBsinθ.
3.当v∥B时,洛伦兹力的大小为________.
例1图3中各图已标出磁场方向、电荷运动方向、电荷所受洛伦兹力方向三者中的两个,试标出另一个的方向.
图3
变式训练1
图4
如图4所示,将水平导线置于真空中,并通以恒定电流I.导线的正下方有一质子初速度方向与电流方向相同,则质子的运动情况可能是()
A.沿路径a运动B.沿路径b运动
C.沿路径c运动D.沿路径d运动
例2
图5
如图5所示,摆球带负电荷的单摆,在一匀强磁场中摆动.匀强磁场的方向垂直于纸面向里.摆球在A、B间摆动过程中,由A摆到最低点C时,摆线拉力大小为F1,摆球加速度大小为a1;由B摆到最低点C时,摆线拉力大小为F2,摆球加速度大小为a2,则()
A.F1>F2,a1=a2B.F1<F2,a1=a2
C.F1>F2,a1>a2D.F1<F2,a1<a2
听课记录:
变式训练2下列关于带电荷量为+q的粒子在匀强磁场中运动的说法,正确的是()
A.只要速度的大小相同,所受洛伦兹力的大小就相同
B.如果把+q改为-q,且速度反向而大小不变,则洛伦兹力的大小、方向都不变
C.洛伦兹力方向一定与电荷运动的速度方向垂直,磁场方向也一定与电荷的运动方向垂直
D.当粒子只受洛伦兹力作用时,动能不变
例3
图6
如图6所示,套在很长的绝缘直棒上的小球其质量为m,带电荷量是+q,小球可在棒上滑动.将此棒竖直放在互相垂直、方向如图所示的匀强电场和匀强磁场中,电场强度大小为E,磁感应强度大小为B.小球与棒的动摩擦因数为μ,求小球由静止沿棒下落的最大加速度和最大速度.
图7
变式训练3质量为0.1g的小物块,带有5×10-4C的电荷量,放在倾角为30°的绝缘光滑斜面上,整个斜面置于0.5T的匀强磁场中,磁场方向如图7所示.物块由静止开始下滑,滑到某一位置时,物块开始离开斜面(设斜面足够长,取g=10m/s2),问:
(1)物块带何种电荷?
(2)物块离开斜面时的速度为多少?
【即学即练】
1.关于带电粒子所受洛伦兹力F、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是()
A.F、B、v三者必定均保持垂直
B.F必定垂直于B、v,但B不一定垂直于v
C.B必定垂直于F,但F不一定垂直于v
D.v必定垂直于F、B,但F不一定垂直于B
2.下列说法正确的是()
A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用
B.运动电荷在某处不受洛伦兹力的作用,则该处的磁感应强度一定为零
C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度
D.洛伦兹力对带电粒子不做功
图8
3.初速度为v0的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图8所示,则()
A.电子将向右偏转,速率不变
B.电子将向左偏转,速率改变
C.电子将向左偏转,速率不变
D.电子将向右偏转,速率改变
4.一初速度为零的质子,经过电压为1880V的电场加速后,垂直进入磁感应强度为5.0×10-4T的匀强磁场中,则质子受到的洛伦兹力多大?(质子质量m=1.67×10-27kg,g=10m/s2)
参考答案
课前自主学习
一、
1.磁场对运动电荷的作用力
2.左手左垂直平面正电荷运动正电荷相反
二、洛伦兹力垂直于磁场qvB
核心知识探究
一、
[问题情境]
1.洛伦兹力是磁场对运动电荷的作用力.
2.运动的电荷在磁场中要受到力的作用.
3.左手用法相同.
[要点提炼]
1.运动
2.左手左正电荷正
3.跟沿相同方向运动的正电荷所受的力的方向相反
[问题延伸]
始终垂直不做功
二、
[问题情境]
1.安培力是洛伦兹力的宏观表现.
2.由公式f=qvB来确定.
3.当带电粒子以某一速度进入相互垂直的电场和磁场共存的区域时,只有满足qvB=qE的粒子才能做匀速直线运动而离开该区域,即v=EB,若速度不等于该值,则粒子不能离开该区域.
[要点提炼]
1.qvB3.0
解题方法探究
例1(1)受力方向垂直于v斜向上;
(2)受力方向垂直于v向左;
(3)运动方向平行于斜面向下;
(4)磁场方向垂直于纸面向外.
解析用左手定则判断,对-q,四指应指向其运动方向的反方向.分别可得,图(1)中+q受洛伦兹力方向垂直于v斜向上;图(2)中-q受洛伦兹力方向垂直于v向左;图(3)中-q运动方向平行于斜面向下,图(4)中匀强磁场方向垂直于纸面向外.
变式训练1B[首先判断出电流I在导线下方产生的磁场为垂直纸面向外,然后由左手定则即可判断质子的运动轨迹应为b.]
例2B
[由于洛伦兹力不做功,所以从B和A到达C点的速度大小相等.由a=v2r可得a1=a2.当由A运动到C时,以小球为研究对象受力分析如图甲所示,F1+f洛-mg=ma1.当由B运动到C时,受力分析如图乙所示,F2-f洛-mg=ma2.由以上两式可得:F2>F1,故B正确.]
变式训练2BD[洛伦兹力的大小不仅与速度的大小有关,还与其方向有关,故A项错误;用左手定则判定洛伦兹力方向时,负电荷运动的方向跟正电荷运动的方向相反,故把+q换成-q,且速度反向而大小不变时,洛伦兹力的方向不变,又因速度方向与B的夹角也不变,故洛伦兹力的大小、方向均不发生变化,B项正确;洛伦兹力的方向一定跟电荷速度方向垂直,但电荷进入磁场的速度方向可以是任意的,因而磁场方向与电荷的运动方向的夹角也可以是任意的,故C项错误;洛伦兹力对运动电荷不做功,不改变运动电荷的动能,故D项正确.
例3g-μqEmmgμqB-EB
解析此类问题属于涉及加速度的力学问题,必定得用牛顿第二定律解决,小球受力分析如图所示,根据牛顿第二定律列出方程有
mg-μFN=ma,①
FN-qE-qvB=0,②
所以a=mg-μqvB+qEm
故知v=0时,a最大,am=g-μqEm.
同样可知,a随v的增大而减小,
当a减小到零时,v达最大,故mg=μ(qvmB+qE)
得vm=mgμqB-EB.
变式训练3(1)负电荷(2)3.46m/s
解析(1)由左手定则可知物块带负电荷.
(2)当物块离开斜面时,物块对斜面的压力FN=0,对物块受力分析如图所示,则有f=mgcos30°,即qvB=mgcos30°.
解得v=3.46m/s.
即学即练
1.B[根据左手定则,F一定垂直于B、v;但B与v不一定垂直.]
2.D[运动电荷在磁场中所受的洛伦兹力F=qvBsinθ,所以F的大小不但与q、v、B有关系,还与v的方向与B的夹角θ有关系,当θ=0°或180°时,F=0,此时B不一定等于零,所以A、B错误;又洛伦兹力与粒子的速度方向始终垂直,所以洛伦兹力对带电粒子不做功,粒子的动能也就不变,但粒子速度方向要改变.所以C错,D对.]
3.A[导线在其右侧产生的磁场垂直纸面向里,由左手定则可判断电子向右偏转,因洛伦兹力不做功,故速率不变.]
4.4.8×10-17N
解析对质子在电场中加速过程有:qU=12mv2①
质子在磁场中受力F=Bqv②
由①②两式得:F=Bq2qUm
代入数据得:F=4.8×10-17N.
俗话说,磨刀不误砍柴工。高中教师要准备好教案为之后的教学做准备。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师提前熟悉所教学的内容。关于好的高中教案要怎么样去写呢?下面是小编帮大家编辑的《3.6洛伦兹力与现代技术学案2(粤教版选修3-1)》,欢迎阅读,希望您能阅读并收藏。
3.6洛伦兹力与现代技术学案2(粤教版选修3-1)
1.运动电荷进入磁场后(无其他场),可能做()
A.匀速圆周运动B.匀速直线运动
C.匀加速直线运动D.平抛运动
2.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是()
A.洛伦兹力对带电粒子做功
B.洛伦兹力不改变带电粒子的动能
C.洛伦兹力的大小与速度无关
D.洛伦兹力不改变带电粒子的速度方向
图1
3.如图1所示,两根相互平行放置的长直导线a和b通有大小相等、方向相反的电流,a受到的磁场力大小为F1.当加入一与导线所在平面垂直的匀强磁场后,a受到的磁场力大小变为F2,则此时b受到的磁场力大小为()
A.F2B.F1-F2
C.F1+F2D.2F1-F2
4.质子以v=1.0×104m/s的速度进入B=0.1T的匀强磁场中,磁场方向垂直纸面向外,v的方向沿纸面与水平线成α=60°角,则质子在磁场中受的洛伦兹力大小为________N.
一、带电粒子在复合场中的运动
1.复合场
一般是指电场、磁场和重力场并存,或其中两种场并存,或分区域存在.
2.三种场力的特点
(1)重力的方向始终竖直向下,重力做功与路径无关,重力做的功等于重力势能的减少量.
(2)电场力的方向与电场方向相同或相反,电场力做功与路径无关,电场力做的功等于电势能的减少量.
(3)洛伦兹力的大小和速度方向与磁场方向的夹角有关,方向始终垂直于速度v和磁感应强度B共同决定的平面.无论带电粒子做什么运动,洛伦兹力始终不做功.
3.带电粒子在复合场中的运动规律及解决办法
带电粒子在复合场中运动时,其运动状态是由粒子所受电场力、洛伦兹力和重力的共同作用来决定的,对于有轨道约束的运动,还要考虑弹力、摩擦力对运动的影响,带电粒子在复合场中的运动情况及解题方法如下:
(1)若粒子所受的电场力、洛伦兹力和重力的合力为零,则粒子处于静止或匀速直线运动状态,应利用平衡条件列方程求解.
(2)若粒子所受匀强电场的电场力和重力平衡,那么粒子在匀强磁场的洛伦兹力作用下有可能做匀速圆周运动,应利用平衡方程和向心力公式求解.
(3)当带电粒子在复合场中做非匀变速曲线运动时,带电粒子所受洛伦兹力必不为零,且其大小和方向不断变化,但洛伦兹力不做功,这类问题一般应用动能定理求解.
例1
图2
已知质量为m的带电液滴,以速度v射入相互垂直的匀强电场E和匀强磁场B中,液滴在此空间刚好能在竖直平面内做匀速圆周运动,如图2所示.求:
(1)液滴在空间受到几个力作用;
(2)液滴电性及带电荷量;
(3)液滴做匀速圆周运动的半径多大.
图3
变式训练1如图3所示,匀强电场方向水平向右,匀强磁场方向垂直于纸面向里,一质量为m、带电荷量为q的微粒以与磁场方向垂直,与电场成45°角的速度v射入复合场中,恰能做匀速直线运动,求电场强度E和磁感应强度B的大小.
例2如图4所示,在相互垂直的匀强电场和匀强磁场中,有一倾角为θ、足够长的光滑绝缘斜面.磁感应强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m、带电荷量为+q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零.若迅速把电场方向反转为竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?
变式训练2如图5所示,将倾角为θ的光滑绝缘斜面放置在一个足够大的、磁感应强度为B、方向垂直纸面向里的匀强磁场中.一个质量为m、带电荷量为-q的小滑块,在竖直平面内沿斜面由静止开始下滑.问:经过多长时间,带电滑块将脱离斜面?
二、复合场问题实际应用举例
1.速度选择器
图6
原理:如图6所示,所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中.已知电场强度为B,方向垂直于纸面向里,若粒子运动轨迹不发生偏折(重力不计),必须满足平衡条件:qBv=qE,故v=EB.这样就把满足v=EB的粒子从速度选择器中选择出来了.
特点:
(1)速度选择器只选择速度(大小、方向)而不选择粒子的质量和电量.若粒子从图5中右侧入射,则不能穿出场区.
(2)速度选择器B、E、v三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向.若图中只改变磁场B的方向,粒子将向下偏转.
图7
2.磁流体发电机
图7是磁流体发电机,其原理是:等离子气体喷入磁场B,正、负离子在洛伦兹力作用下发生上下偏转而聚集到A、B板上,产生电势差.设板间距离为l,当等离子气体以速度v匀速通过A、B板时,A、B板上聚集的电荷最多,板间电势差最大,即为电源电动势.此时离子受力平衡:E场q=Bqv,即E场=Bv,故电源电动势E=E场l=Blv.
3.电磁流量计
图8
如图8所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a、b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差U保持稳定.由Bqv=Eq=Udq可得,v=UBd.流量Q=Sv=πd24UBd=πdU4B,所以只要测得Uab即可测Q.
图9
例3医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图9所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160μV,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为()
A.1.3m/s,a正、b负
B.2.7m/s,a正、b负
C.1.3m/s,a负、b正
D.2.7m/s,a负、b正
听课记录:
变式训练3
图10
某制药厂的污水处理站的管道中安装了如图10所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上下底面方向加磁感应强度为B的匀强磁场,在前后两个面的内侧固定有金属板作为电极.当含有大量正负离子(其重力不计)的污水充满管口从左向右流经该装置时,利用电压表所显示的两个电极间的电压U,就可测出污水流量Q(单位时间内流出的污水体积).则下列说法正确的是()
A.后表面的电势一定高于前表面的电势,与正负离子的多少无关
B.若污水中正负离子数相同,则前后表面的电势差为零
C.流量Q越大,两个电极间的电压U越大
D.污水中离子数越多,两个电极间的电压U越大
【即学即练】
图11
1.如图11所示,在平行带电金属板间有垂直于纸面向里的匀强磁场,质子、氘核、氚核沿平行于金属板方向,以相同动能射入两极板间,其中氘核沿直线运动,未发生偏转,质子和氚核发生偏转后射出,则:①偏向正极板的是质子;②偏向正极板的是氚核;③射出时动能最大的是质子;④射出时动能最大的是氚核.以上说法正确的是()
A.①②B.②③C.③④D.①④
图12
2.在图12中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过此区域时未发生偏转,设重力可以忽略不计,则在此区域中的E和B的方向不可能是()
A.E和B都沿水平方向,并与电子运动的方向相同
B.E和B都沿水平方向,并与电子运动的方向相反
C.E竖直向上,B垂直纸面向外
D.E竖直向上,B垂直纸面向里
图13
3.一个带正电的微粒(重力不计)穿过如图13所示的匀强磁场和匀强电场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采用的办法是()
A.增大电荷质量
B.增大电荷电荷量
C.减小入射速度
D.增大磁感应强度
参考答案
课前自主学习
1.AB[垂直磁场进入做匀速圆周运动,平行磁场进入做匀速直线运动.]
2.B[根据洛伦兹力的特点,洛伦兹力对带电粒子不做功,A错.根据f=qvB,可知大小与速度有关,C错.洛伦兹力的效果就是改变物体的运动方向,不改变速度的大小D错,B对.]
3.A[由安培定则判断知a在b处和b在a处产生的磁感应强度大小相等,方向相同,又由左手定则知a、b所受磁场力大小相等,方向相反;当加入一垂直平面(向里或向外)的匀强磁场时,a、b处的磁感应强度同时增大或减小,即a、b处磁感应强度仍相同,所以a、b导线受磁场力大小仍相等,故A正确.]
4.1.6×10-16
解析本题中,B与v的夹角为90°,由公式f=Bqvsinθ可得f=1.6×10-16N.
解题方法探究
例1见解析
解析(1)由于是带电液滴,它必然受重力,又处于电场和磁场的复合场中,还应受到电场力及洛伦兹力,共受到三个力作用.
(2)因液滴做匀速圆周运动,故必须满足重力与电场力平衡,所以应带负电,由mg=Eq得电荷量q=mgE.
(3)尽管液滴受三个力作用,但合力等于洛伦兹力,所以仍可用半径公式r=mvqB,把电荷量代入可得r=mvmgEB=EvgB.
变式训练1E=mg/qB=2mg/qv
例2m2gcos2θq2B2sinθmcotθqB
解析重力和电场力是恒力,洛伦兹力是变力,随速度的增大而增大,注意临界条件的确定.
电场反转前:mg=qE①
电场反转后,小球先沿斜面向下做匀加速直线运动,到对斜面压力减为零时开始离开斜面,此时有:
qvB=(mg+qE)cosθ②
小球在斜面上滑行距离为:
S=12vt=12at2.③
a=2gsinθ.④
联立式①②③④得S=m2gcos2θq2B2sinθ,所用时间为t=mcotθqB
变式训练2mcotθqB
例3A[血液中的离子达到平衡后,电场力和磁场力的合力为零,qE=qvB,即qUd=qvB,故v=UBd,代入数据解得v=1.3m/s.由左手定则知:a端电势高,是正极,选项A正确.]
变式训练3AC[由左手定则可以判断出,正离子向后表面偏转,负离子向前表面偏转,从而使后表面的电势高于前表面的电势,与正负离子的数量无关,后、前表面的电势差大于零,A正确,B错误;当前后表面集聚的电荷使再进入的离子受到的电场力和洛伦兹力平衡,即qUd=qvB时,两极间电压便不再变化,与污水中离子数无关.流量越大,污水的流速越大,由平衡式可得U越大,C正确,D错误.]
即学即练
1.D[质子、氘核、氚核质量数和电荷数分别为11H、21H、31H,由于它们的动能相同,故质子的速度大于氘核速度,氚核的速度小于氘核速度,而氘核未发生偏转,则氚核偏向电场力方向,电场力做正功,动能增加.质子偏向洛伦兹力方向,电场力做负功,动能减小,故选D.]
2.D[E和B都沿水平方向,并与电子运动的方向相同,电子不受洛伦兹力的作用,受到的电场力跟运动方向相反,若电子有足够的动能是可以穿过的,A项对;E和B都沿水平方向,并与电子运动的方向相反,电子不受洛伦兹力,所受电场力跟运动方向相同,做匀加速直线运动,B项对;E竖直向上,B垂直纸面向外,从左方进入的电子受到向下的电场力、向上的洛伦兹力,若平衡则能匀速穿过,C项对,同理判断D项错误.]
3.C[粒子在穿过这个区域时所受的力为:竖直向下的电场力Eq和竖直向上的洛伦兹力qvB,且此时Eq=qvB.若要使电荷向下偏转,需使Eq>qvB,则减小速度v、减小磁感应强度B或增大电场强度E均可.]
古人云,工欲善其事,必先利其器。高中教师要准备好教案为之后的教学做准备。教案可以让学生们充分体会到学习的快乐,帮助高中教师缓解教学的压力,提高教学质量。那么,你知道高中教案要怎么写呢?下面的内容是小编为大家整理的安培力的应用,希望能对您有所帮助,请收藏。
3.4安培力的应用学案(粤教版选修3-1)
一、直流电动机
电动机有________电动机和______电动机之分,直流电动机的优点是通过改变________可调节它的转速.
图1
如图1所示,单匝线圈abcd在匀强磁场(磁感应强度为B)中通以电流I,当线圈平面与磁场的夹角为α时,则此时安培力的力矩M=Mab+Mcd,即:M=Fabbc2cosα+Fcdbc2cosα,而Fab=Fcd=BIab,所以M=BIScosα.
若线圈是N匝线圈绕制而成,则M=NBIScosα.线圈在磁场中受到安培力矩M=NBIScosα作用而转动起来,这就是电动机转动的原理.
二、磁电式电表(如图2所示)
图2
1.构造:(1)____________(2)____________(3)__________
2.磁场对电流的作用力跟电流成______比,因而线圈中的电流越大,______力产生的力矩越大,线圈和指针偏转的角度也就越________.因此,根据指针偏转角度的大小,可以知道___.
一、直流电动机
[问题情境]
电动机是将电能转化为机械能的重要装置,在日常生活中有广泛的应用,电动机有直流电动机和交流电动机之分,通过课本“实验与探究”的学习,回答以下问题
1.电动机是在什么力的驱使下而转动的?
2.分析课本3-4-2四幅图中线框的受力情况?
3.试从理论上分析如何通过调节电流来控制电动机的转速.
4.直流电动机的优点是什么?有哪些用途?
二、磁电式电表
[问题情境]
1.简述磁电式电表的构造?
2.简述磁电式电表的工作原理?
例1根据以上对磁电式电流表的学习,判断以下说法错误的是()
A.指针稳定后,线圈受到螺旋弹簧的阻力与线圈受到的安培力方向是相反的
B.通电线圈中的电流越大,电流表指针偏转的角度也越大
C.在线圈转动的范围内,各处的磁场都是匀强磁场
D.在线圈转动的范围内,线圈所受安培力与电流有关,而与所处位置无关
听课记录:
变式训练1在直流电动机模型中,下列说法正确的是()
A.当线圈平面静止在与磁感线方向垂直的位置时,若通以直流电,线圈将转动起来
B.随着线圈的转动,线圈上各边所受的安培力大小都要发生变化
C.当线圈平面与磁感线方向平行时,安培力的力矩最小
D.改变线圈中的输入电压,电动机的转速也将发生变化
例2如图3所示,把轻质导电线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈平面,当线圈内通入如图方向的电流后,则线圈()
图3
A.向左运动
B.向右运动
C.静止不动
D.无法确定
听课记录:
图4
变式训练2一条形磁铁放在水平桌面上,在它的上方靠S极一侧吊挂一根与它垂直的导体棒,图4中只画出此棒的横截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是()
A.磁铁对桌面的压力减小
B.磁铁对桌面的压力增大
C.磁铁受到向右的摩擦力
D.磁铁受到向左的摩擦力
图5
例3如图5所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向里运动,可以()
A.将a、c端接在电源正极,b、d端接在电源负极
B.将b、d端接在电源正极,a、c端接在电源负极
C.将a、d端接在电源正极,b、c端接在电源负极
D.将a、c端接在交流电源的一端,b、d端接在交流电源的另一端
听课记录:
点评安培定则、左手定则尽管都与电流、导线有关,而且往往同时应用,但安培定则是用来判断电流的磁场方向,又称右手螺旋定则,用右手判断;而左手定则是用左手判断通电导线的受力情况的.
图6
变式训练3直导线AB与圆线圈的平面垂直且隔有一小段距离,直导线固定,线圈可以自由运动.当通过如图6所示的电流时(同时通电),从左向右看,线圈将()
A.顺时针转动,同时靠近直导线AB
B.顺时针转动,同时离开直导线AB
C.逆时针转动,同时靠近直导线AB
D.不动
图7
例4在倾角为α的光滑斜面上,放置一通有电流为I,长为L,质量为m的导体棒,如图7所示,试问:
(1)欲使棒静止在斜面上,外加匀强磁场的磁感应强度B的最小值和方向.
(2)欲使棒静止在斜面上且对斜面无压力,外加匀强磁场的磁感应强度B的大小和方向.
图8
变式训练4如图8所示,用两根轻细悬线将质量为m、长为L的金属棒ab悬挂在c、d两处,置于竖直向上的匀强磁场内.当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角,棒处于平衡状态.则磁感应强度B为多少?为了使棒平衡在该位置上,所需磁场的最小磁感应强度B为多少?方向如何?
【即学即练】
1.下列关于磁电式电流表的说法中,正确的是()
A.电流表的工作原理是安培力对通电导线的加速作用
B.电流表的工作原理是安培力对通电线框的转动作用
C.电流表指针的偏转角与所通电流的大小成正比
D.电流表指针的偏转角与所通电流的大小成反比
2.一根长为0.2m、通有2A电流的通电导线放在磁感应强度为0.5T的匀强磁场中,则其受到的磁场力的大小不可能是()
A.0.4NB.0.2NC.0.1ND.0
图9
3.一根有质量的金属棒MN两端用细软导线连接后悬挂于a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中电流方向从M流向N,如图9所示,此时棒受到导线对它的拉力作用.为使拉力等于零,可以()
A.适当减小磁感应强度B.适当增大电流
C.使磁场反向D.使电流反向
图10
4.质量为m、长度为L的导体棒MN静止在水平导轨上.通过MN的电流为I,匀强磁场的磁感应强度为B,与导轨平面成θ角斜向上,如图10所示.求MN受到的支持力和摩擦力的大小.
参考答案
课前自主学习
一、直流交流输入电压
二、1.(1)软铁(2)螺旋弹簧(3)线圈2.正安培大被测电流的强弱
核心知识探究
一、
[问题情境]
1.电动机是在线圈所受安培力的作用下转动的.
2.(a)图中红色边受向上的安培力,蓝色边受力向下.此时力矩最大,转动效果最明显;(b)图中线圈转到竖直位置前,红色边受力向上,蓝色边受力向下;此时力矩为0,无转动效果;(c)图中红色边受力向下,蓝色边受力向上,此时力矩最大,转动效果最明显(与(a)图同向);(d)图中线圈转到竖直位置前,红色边受力向下,蓝色边受力向上,此时力矩为0,无转动效果.
3.因使线圈转动的力为安培力BIL,B、L均为固定值,所以通过调节I可改变力的大小,从而调节转速.
4.通过调节输入电压很容易调节电动机的转速,用途为无轨电车、电气机车等.
二、
[问题情境]
1.见课本
2.(1)蹄形磁铁和铁芯间的磁场是均匀辐射分布的,线圈在转动过程中始终与磁感线平行.
(2)当线圈通入电流后,线圈的两条边受到如图所示的安培力,线圈转动,连带指针偏转,同时螺旋弹簧给线圈施加阻力,最终指针停在某一角度.线圈通入的电流越大,指针偏转的角度越大,因此指针偏转角度的大小就可以表示线圈中通过电流的大小,通过刻度盘就可以直接读出电流的数值.
解题方法探究
例1C[当阻碍线圈转动的螺旋弹簧的阻力力矩与安培力引起的动力力矩达到平衡时,线圈停止转动,故从转动角度来看二力方向相反,A正确;磁电式电流表的内磁场是均匀辐射磁场,因此不是匀强磁场,C错误;但是不管线圈转到什么角度,它的平面都跟磁感线平行,线圈所在各处的磁场大小相等、方向不同,所以安培力与电流大小有关,而与所述位置无关,电流越大,安培力越大,指针转过的角度越大.]
变式训练1D
例2A[方法一:等效法.把通电线圈等效成小磁针.由安培定则,线圈等效成小磁针后,左端是S极,右端是N极,异名磁极相吸引,线圈向左运动.
方法二:电流元法.如图所示,取其中的上、下两小段分析,根据其中心对称性,线圈所受安培力的合力水平向左,故线圈向左运动.]
变式训练2AD
例3C[按照A选项中接法,由安培定则知螺线管上端为N极,MN中电流方向自左向右,由左手定则知MN垂直于纸面向外运动;B选项中的接法使螺线管上端为S极,MN中电流方向自左向右,故由左手定则可判断,MN垂直于纸面向外运动;而C选项中螺线管上端为S极,MN中电流方向自右向左,则由左手定则可判知,MN垂直于纸面向里运动,所以选项C正确.D选项所接为交流电,只要保证a、c的电势相对于另一端同步变化(即同高或同低),则线圈磁场方向与MN中电流方向的关系即与选项A、B两种情况相同.]
变式训练3C
例4(1)mgsinαIL,方向垂直斜面向上
(2)mgIL,方向水平向左
解析(1)棒在斜面上处于静止状态,故受力平衡.棒共受三个力作用:重力大小为mg,方向竖直向下;弹力垂直于斜面,大小随磁场力的变化而变化;磁场力始终与磁场方向及电流方向垂直,大小随磁场方向不同而改变,但由平衡条件知:斜面弹力与磁场力的合力必与重力mg等大反向,故当磁场力方向与弹力方向垂直即沿斜面向上时,安培力最小Fmin=mgsinα,所以B=mgsinαIL,由左手定则知:B的方向应垂直斜面向上.
(2)棒静止在斜面上,又对斜面无压力,则棒只受两个力作用,即竖直向下的重力mg和磁场力F作用,由平衡条件知F=mg,且磁场力F竖直向上,所以BIL=mg,故B=mgIL,由左手定则知B的方向水平向左.
变式训练4mgILtanθmgILsinθ,方向平行于悬线向上
即学即练
1.BC2.A3.B
4.mg-BILcosθBLIsinθ
作为杰出的教学工作者,能够保证教课的顺利开展,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师能够井然有序的进行教学。教案的内容要写些什么更好呢?小编经过搜集和处理,为您提供米洛斯的维纳斯教案,仅供参考,欢迎大家阅读。
米洛斯的维纳斯教案文章来源:http://m.jab88.com/j/45782.html
更多