88教案网

函数对称性的探究

一位优秀的教师不打无准备之仗,会提前做好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师能够更轻松的上课教学。那么,你知道高中教案要怎么写呢?急您所急,小编为朋友们了收集和编辑了“函数对称性的探究”,欢迎阅读,希望您能阅读并收藏。

函数对称性的探究

绍兴县越崎中学数学组徐民江

函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究

定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是

f(x)+f(2a-x)=2b

证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P‘(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)

即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。

(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)

∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。

故点P‘(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P‘关于点A(a,b)对称,充分性得征。

推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0

定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是

f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)

推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)

定理3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。

②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。

③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。

①②的证明留给读者,以下给出③的证明:

∵函数y=f(x)图像既关于点A(a,c)成中心对称,

∴f(x)+f(2a-x)=2c,用2b-x代x得:

f(2b-x)+f[2a-(2b-x)]=2c………………(*)

又∵函数y=f(x)图像直线x=b成轴对称,

∴f(2b-x)=f(x)代入(*)得:

f(x)=2c-f[2(a-b)+x]…………(**),用2(a-b)-x代x得

f[2(a-b)+x]=2c-f[4(a-b)+x]代入(**)得:

f(x)=f[4(a-b)+x],故y=f(x)是周期函数,且4|a-b|是其一个周期。

二、不同函数对称性的探究

定理4.函数y=f(x)与y=2b-f(2a-x)的图像关于点A(a,b)成中心对称。

定理5.①函数y=f(x)与y=f(2a-x)的图像关于直线x=a成轴对称。

②函数y=f(x)与a-x=f(a-y)的图像关于直线x+y=a成轴对称。

③函数y=f(x)与x-a=f(y+a)的图像关于直线x-y=a成轴对称。

定理4与定理5中的①②证明留给读者,现证定理5中的③

设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于直线x-y=a的轴对称点为P‘(x1,y1),则x1=a+y0,y1=x0-a,∴x0=a+y1,y0=x1-a代入y0=f(x0)之中得x1-a=f(a+y1)∴点P‘(x1,y1)在函数x-a=f(y+a)的图像上。

同理可证:函数x-a=f(y+a)的图像上任一点关于直线x-y=a的轴对称点也在函数y=f(x)的图像上。故定理5中的③成立。

推论:函数y=f(x)的图像与x=f(y)的图像关于直线x=y成轴对称。

三、三角函数图像的对称性列表

函数

对称中心坐标

对称轴方程

y=sinx

(kπ,0)

x=kπ+π/2

y=cosx

(kπ+π/2,0)

x=kπ

y=tanx

(kπ/2,0)

注:①上表中k∈Z

②y=tanx的所有对称中心坐标应该是(kπ/2,0),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y=tanx的所有对称中心坐标是(kπ,0),这明显是错的。

四、函数对称性应用举例

例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=f(5+x),则f(x)一定是()(第十二届希望杯高二第二试题)

(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数

(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数

解:∵f(10+x)为偶函数,∴f(10+x)=f(10-x).

∴f(x)有两条对称轴x=5与x=10,因此f(x)是以10为其一个周期的周期函数,∴x=0即y轴也是f(x)的对称轴,因此f(x)还是一个偶函数。

故选(A)

例2:设定义域为R的函数y=f(x)、y=g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y=x对称,若g(5)=1999,那么f(4)=()。

(A)1999;(B)2000;(C)2001;(D)2002。

解:∵y=f(x-1)和y=g-1(x-2)函数的图像关于直线y=x对称,

∴y=g-1(x-2)反函数是y=f(x-1),而y=g-1(x-2)的反函数是:y=2+g(x),∴f(x-1)=2+g(x),∴有f(5-1)=2+g(5)=2001

故f(4)=2001,应选(C)

例3.设f(x)是定义在R上的偶函数,且f(1+x)=f(1-x),当-1≤x≤0时,

f(x)=-x,则f(8.6)=_________(第八届希望杯高二第一试题)

解:∵f(x)是定义在R上的偶函数∴x=0是y=f(x)对称轴;

又∵f(1+x)=f(1-x)∴x=1也是y=f(x)对称轴。故y=f(x)是以2为周期的周期函数,∴f(8.6)=f(8+0.6)=f(0.6)=f(-0.6)=0.3

例4.函数y=sin(2x+)的图像的一条对称轴的方程是()(92全国高考理)(A)x=-(B)x=-(C)x=(D)x=

解:函数y=sin(2x+)的图像的所有对称轴的方程是2x+=k+

∴x=-,显然取k=1时的对称轴方程是x=-故选(A)例5.设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,

f(x)=x,则f(7.5)=()(A)0.5(B)-0.5(C)1.5(D)-1.5解:∵y=f(x)是定义在R上的奇函数,∴点(0,0)是其对称中心;

又∵f(x+2)=-f(x)=f(-x),即f(1+x)=f(1-x),∴直线x=1是y=f(x)对称轴,故y=f(x)是周期为2的周期函数。∴f(7.5)=f(8-0.5)=f(-0.5)=-f(0.5)=-0.5故选(B)

扩展阅读

高一数学教案:《函数图象对称性与周期性的关联》教学设计


高一数学教案:《函数图象对称性与周期性的关联》教学设计

【教学目标】:

1.掌握特殊到一般的分析方法:学会从特殊化中发现性质结论,再证明一般化性质结论.

2.更好地认知建构数学知识的过程:能从自己已有的数学知识和认知经验出发,经过思考研究,得出新的数学结论.

3.训练抽象能力,提高目标推理能力.

重点:掌握研究抽象问题的一种方法.

难点:周期性的代数推导.

【回顾复习】(提问式复习)

提问:奇、偶函数有什么特点?(图象特点、代数表达式)

进一步提问,更一般的关于x=a或M(a,0)对称的代数表达式是什么呢?

【引申问题】

刚才说的函数图象都是一条对称轴或一个对称点的问题。那么我们是否可以引申问题呢?学生积极思考提出想法,进而引申出新的问题:

两条对称轴(两线)、一条对称轴一个对称中心(一点一线)、两个对称中心(两点)

从中选取一个问题(如:两线)具体化,提出思考:

定义在R上的偶函数的图象关于x=1对称,那么会具有什么样的性质呢?

【迁移问题】

一般结论1:设是定义在上的函数,其图像关于直线和对称,探究的性质.(学生讨论研究,自行展示研究结果)

一般结论2:是定义在上的函数,其图像关于点中心对称,且其图像关于直线对称,探究的性质

(学生讨论研究,自行展示研究结果)

一般结论3:

设是定义在上的函数,其图像关于点和()对称,的周期(类比,留作课后思考)

【解决问题】

1.定义在R上的偶函数,其图象关于x=2对称,当时,,则当时,.

2.已知是偶函数,是奇函数,且,则。

【小结】

本讲展示了解决一些抽象数学问题的研究方法:先特殊化(如本讲先具体化函数图象),再从特殊情形中找到结论性质,再加以严格的推理证明。另一方面,也诠释了数学知识构建的过程,即通过已有知识和经验,经过思考和研究得出新的数学结论性质.

高一数学《单位圆的对称性与诱导公式》教案


一名优秀的教师就要对每一课堂负责,教师要准备好教案,这是教师的任务之一。教案可以让学生更容易听懂所讲的内容,帮助教师缓解教学的压力,提高教学质量。那么如何写好我们的教案呢?小编收集并整理了“高一数学《单位圆的对称性与诱导公式》教案”,希望对您的工作和生活有所帮助。

高一数学《单位圆的对称性与诱导公式》教案

【学习目标】
1、感受数学探索的成功感,提高学习数学的兴趣;
2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。
3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。
【学习重点】三角函数的诱导公式的理解与应用
【学习难点】诱导公式的推导及灵活运用
【知识链接】(1)单位圆中任意角α的正弦、余弦的定义
(2)对称性:已知点P(x,y),那么,点P关于x轴、y轴、原点对称的点坐标
【学习过程】
一、预习自学
阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:
(1)-407[导学案]wbr4.4单位圆的对称性与诱导公式与407[导学案]wbr4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(2)角407[导学案]wbr4.4单位圆的对称性与诱导公式与角407[导学案]wbr4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(3)角407[导学案]wbr4.4单位圆的对称性与诱导公式与角407[导学案]wbr4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(4)角407[导学案]wbr4.4单位圆的对称性与诱导公式与角407[导学案]wbr4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
二、合作探究
探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。
(1)407[导学案]wbr4.4单位圆的对称性与诱导公式(2)407[导学案]wbr4.4单位圆的对称性与诱导公式(3)sin(-1650°);
探究2:化简:407[导学案]wbr4.4单位圆的对称性与诱导公式407[导学案]wbr4.4单位圆的对称性与诱导公式(先逐个化简)
探究3、利用单位圆求满足407[导学案]wbr4.4单位圆的对称性与诱导公式的角的集合。
三、学习小结
(1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?
(2)本节学习涉及到什么数学思想方法?
(3)我的疑惑有
【达标检测】
1、在单位圆中,角α的终边与单位圆交于点P(-407[导学案]wbr4.4单位圆的对称性与诱导公式,407[导学案]wbr4.4单位圆的对称性与诱导公式),
则sin(-α)=;cos(α±π)=;cos(π-α)=
2.求下列函数值:
(1)sin(407[导学案]wbr4.4单位圆的对称性与诱导公式)=;(2)cos210=
3、若cosα=-1/2,则α的集合S=

高一数学《单位圆的对称性与诱导公式二》教案


一名优秀的教师就要对每一课堂负责,高中教师要准备好教案为之后的教学做准备。教案可以让学生们充分体会到学习的快乐,使高中教师有一个简单易懂的教学思路。关于好的高中教案要怎么样去写呢?为此,小编从网络上为大家精心整理了《高一数学《单位圆的对称性与诱导公式二》教案》,欢迎您参考,希望对您有所助益!

高一数学《单位圆的对称性与诱导公式二》教案

【学习目标】
1、理解408[导学案]wbr4.4单位圆的对称性与诱导公式(二)的正余弦函数的关系的推导,并熟记诱导公式;
2、能用诱导公式进行简单的应用。
【学习重点】三角函数的诱导公式的理解与应用
【学习难点】诱导公式的推导及灵活运用
【学习过程】一、预习自学
阅读书第21页——23页练习部分以前内容,通过对408[导学案]wbr4.4单位圆的对称性与诱导公式(二)终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:
(1)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)的正弦函数、余弦函数关系
(2)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)正弦函数、余弦函数关系
二、合作探究
探究1、已知408[导学案]wbr4.4单位圆的对称性与诱导公式(二)分别求下列的值:
(1)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(2)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(3)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(4)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(5)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)
探究2:
求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。
(1)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(2)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)
(3)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)
探究3、化简:408[导学案]wbr4.4单位圆的对称性与诱导公式(二)408[导学案]wbr4.4单位圆的对称性与诱导公式(二)(先逐个化简,再代值)
三、学习小结
(1)说说将任意角的正(余)弦函数转化为锐角正(余)弦函数的一般思路:
(2)我的疑惑:

【达标检测】
1、在单位圆中,角α的终边与单位圆交于点P(-408[导学案]wbr4.4单位圆的对称性与诱导公式(二),408[导学案]wbr4.4单位圆的对称性与诱导公式(二)),
则sinα=;cos(408[导学案]wbr4.4单位圆的对称性与诱导公式(二))=;cos(408[导学案]wbr4.4单位圆的对称性与诱导公式(二)-α)=
2.已知sin(π+α)=408[导学案]wbr4.4单位圆的对称性与诱导公式(二),则sin(-3π+α)=
3、408[导学案]wbr4.4单位圆的对称性与诱导公式(二)

函数的周期性


2.7函数的周期性
——函数的周期性不仅存在于三角函数中,在其它函数或者数列中“突然”出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题
一.明确复习目标
1.理解函数周期性的概念,会用定义判定函数的周期;
2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
二、建构知识网络
1.函数的周期性定义:
若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的
2.若T是周期,则kT(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非所都有最小正周期。如常函数f(x)=C;
3.若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期。
(若f(x)满足f(a+x)=f(a-x)则f(x)的图象以x=a为图象的对称轴,应注意二者的区别)
4.若函数f(x)图象有两条对称轴x=a和x=b,(ab),则2(b-a)是f(x)的一个周期
5.若函数f(x)图象有两个对称中心(a,0),(b,0)(ab),则2(b-a)是f(x)的一个周期。(证一证)
6.若函数f(x)有一条对称轴x=a和一个对称中心(b,0)(ab),则4(b-a)是f(x)的周期。
举例:y=sinx,等.
三.双基题目练练手
1.f(x)是定义在R上的以3为周期的偶函数,且f(1)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()
A.5B.4C.3D.2
2.若函数y=f(x)是周期为2的奇函数,且当x∈(0,1)时f(x)=x+1,则f(π)的值为()
A.π-5B.5-πC.4-πD.π-4
3.是偶函数,且为奇函数,则f(1992)=
4.设存在常数p0,使,则的一个周期是,f(px)的一个正周期是;
5.数列中
简答精讲:1、B;2、A;3、993;因(-1,0)是中心,x=0是对称轴,则周期是4;4、,;5、;由已知,周期为6。
四.经典例题做一做
【例1】已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=x+1.求f(x)在(1,2)上的解析式。
解法1:(从解析式入手,由奇偶性结合周期性,将要求区间上问题转化为已知解析式的区间上。)
∵x∈(1,2),则-x∈(-2,-1),
∴2-x∈(0,1),∵T=2,是偶函数
∴f(x)=f(-x)=f(2-x)=2-x+1=3-x.
x∈(1,2).
解法2(从图象入手也可解决,且较直观)f(x)=f(x+2)
如图:x∈(0,1),f(x)=x+1.∵是偶函数
∴x∈(-1,0)时f(x)=f(-x)=-x+1.
又周期为2,x∈(1,2)时x-2∈(-1,0)
∴f(x)=f(x-2)=-(x-2)+1=3-x.
提炼方法:1.解题体现了化归转化的思想,即把未知的(1,2)上向已知的(0,1)上转化;
2.用好数形结合,对解题很有帮助.

【例2】f(x)的定义域是R,且f(x+2)[1-f(x)]=1+f(x),若f(0)=2008,求f(2008)的值。
解:
周期为8,
法二:依次计算f(2、4、6、8)知周期为8,须再验证。

方法提炼:
1.求周期只需要弄出一个常数;
2.注意既得关系式的连续使用.
【例3】若函数在R上是奇函数,且在上是增函数,且.
①求的周期;
②证明f(x)的图象关于点(2k,0)中心对称;关于直线x=2k+1轴对称,(k∈Z);
③讨论f(x)在(1,2)上的单调性;

解:①由已知f(x)=-f(x+2)=f(x+2+2)=f(x+4),故周期T=4.
②设P(x,y)是图象上任意一点,则y=f(x),且P关于点(2k,0)对称的点为P1(4k-x,-y).P关于直线x=2k+1对称的点为P2(4k+2-x,y).
∵f(4k-x)=f(-x)=-f(x)=-y,∴点P1在图象上,图象关于点(2k,0)对称.
又f(x)是奇函数,f(x+2)=-f(x)=f(-x)
∴f(4k+2-x)=f(2-x)=f(x)=y,∴点P2在图象上,图象关于直线2k+1对称.
③设1x1x22,则-2-x2-x1-1,02-x22-x11.
∵f(x)在(-1,0)上递增,∴f(2-x1)f(2-x2)……(*)
又f(x+2)=-f(x)=f(-x)∴f(2-x1)=f(x1),f(2-x2)=f(x2).
(*)为f(x2)f(x1),f(x)在(1,2)上是减函数.
提炼方法:总结解周期性、单调性及图象对称性的方法。
【研究.欣赏】已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:;②求的解析式;
③求在上的解析式.
解:∵是以为周期的周期函数,且在[-1,1]上是奇函数,∴,∴.
②当时,由题意可设,
由得,∴,
∴.
③∵是奇函数,∴,
又知在上是一次函数,∴可设,而,
∴,∴当时,,
从而时,,故时,.
∴当时,有,∴.
当时,,

∴.

五.提炼总结以为师
1.函数的周期性及有关概念;
2.用周期的定义求函数的周期;
3.函数的周期性与图象的对称性之间的关系;

同步练习2.7函数的周期性
【选择题】
1.f(x)是定义在R上的奇函数,它的最小正周期为T,则f(-)的值为
A.0B.C.TD.-
2.(2004天津)定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,]时,f(x)=sinx,则f()的值为
A.-B.C.-D.
【填空题】
3.设是定义在上,以2为周期的周期函数,且为偶函数,在区间[2,3]上,=,则=
4.已知函数f(x)是偶函数,且等式f(4+x)=f(4-x),对一切实数x成立,写出f(x)的一个最小正周
5.对任意x∈R,f(x)=f(x-1)+f(x+1)且f(0)=6,f(4)=3,则f(69)=
6.设f(x)定义在R上的偶函数,且,又当x∈(0,3]时,f(x)=2x,则f(2007)=。
答案提示:1、A;由f()=f(-+T)=f(-)=-f(),知f()=0.(或取特殊函数f(x)=sinx)
2、D;f()=f(-2π)=f(-)=f()=sin=.
3、;4、8;
5、f(x-1)=f(x)-f(x+1),∴f(x)=f(x+1)-f(x+2)=f(x+2)-f(x+3)-f(x+2)=-f(x+3)
∴f(x)=-f(x+3)=f(x+6).周期是6;f(69)=f(3)=f(-3)=-f(-3+3)=-6
6、,周期T=6,F(2007)=f(3)=6

【解答题】
7.设函数f(x)的最小正周期为2002,并且f(1001+x)=f(1001-x)对一切x∈R均成立,试讨论f(x)的奇偶性.
解:∵周期是2002,∴f(2002+x)=f(x),
又由f(1001+x)=f(1001-x)得f(2002-x)=f(x)
∴对任意的x都有f(x)=f(2002-x)=f(-x),f(x)是偶函数.
8.设f(x)为定义在实数集上周期为2的函数,且为偶函数,已知x∈[2,3]时f(x)=x,求x∈[-2,0]时f(x)的解析式。
分析:由T=2可得x∈[-2,-1]和x∈[0,1]时的解析式;再由奇偶性可得[-1,0]上的解析式。
解:因为函数f(x)是T=2的周期函数,所以f(x+2)=f(x).
又由于f(x)为偶函数,故
所以解析式为

9.设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+2)=0,当-1x≤1时,f(x)=2x-1,求当1x≤3时,函数f(x)的解析式。
思路分析:∵f(x)+f(x+2)=0∴f(x)=-f(x+2)
∵该式对一切x∈R成立,
∴以x-2代x得:f(x-2)=-f[(x-2)+2]=-f(x)
当1x≤3时,-1x-2≤1,∴f(x-2)=2(x-2)-1=2x-5
∴f(x)=-f(x-2)=-2x+5,∴f(x)=-2x+5(1x≤3)
评注:在化归过程中,一方面要转化自变量到已知解析式的定义域,另一方面要保持对应的函数值有一定关系。在化归过程中还体现了整体思想。
10.(2005广东)设函数在上满足,f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0。
(Ⅰ)试判断函数y=f(x)的奇偶性;
(Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
解:由得即
由已知易得,所以,而,从而且
故函数是非奇非偶函数;
(II)由
,从而知函数的周期为
当时,,由已知,又,则
∴当时,只有
∴方程=0在一个周期内只有两个解
而函数在闭区间[-2005,2005]共含有401个周期,所以方程=0在闭区间[-2005,2005]共含有802个解
【探索题】对于k∈Z,用Ik表示区间(2k-1,2k+1]。已知x∈Ik时,f(x)=(x-2k)2,
(1)当k∈N*时,求集合Mk={a|使方程f(x)=ax在Ik上有两个不相等的实根的a的值}
(2)并讨论f(x)的周期性。
解:y=f(x)图像就是将y=x2(x∈(-1,1])向右平移2k个单位所得,其中k∈N
设y1=f(x),y2=ax,由集合Mk可知,若a∈M,则函数y1=f(x)与y2=ax图像有两个交点,即当x=2k+1时,0<y2≤1
∴0<a≤
∴Mk={a|0<a≤,k∈N},即Mk=(0,]
对任意

所以f(x)是2为周期的周期函数。
思路点拔:化简集合,弄清图像变换规律,数形结合求解;周期性的的讨论注要是看你运用定义的意识和能力

文章来源:http://m.jab88.com/j/18482.html

更多

最新更新

更多