88教案网

“机械波的产生”自主体验课的教学设计

俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是老师职责的一部分。教案可以让学生们充分体会到学习的快乐,帮助高中教师在教学期间更好的掌握节奏。那么一篇好的高中教案要怎么才能写好呢?为了让您在使用时更加简单方便,下面是小编整理的““机械波的产生”自主体验课的教学设计”,希望能对您有所帮助,请收藏。

“机械波的产生”自主体验课的--

河北承德第一中学苏凤朝

自主体验课,是指在教师指导下,通过学生自主体验而实现的教学。笔者在“机械波的产生”一节教学中,尝试进行了学生的自主体验,收到了较好的效果。下面是对这一节教学进行的设计实录。

【学习目标】

1.通过学习使学生体验到机械波是怎样产生的;

2.通过自身的活动使学生清楚机械波在传播过程中,传播的是振动形式,振动质点并不随波迁移;机械波传递过程中携带能量和信息;

3.通过实验得到机械波传播的速度与介质有关,与振源振动的频率无关;

4.认识到横波中的波长的意义,知道振源振动一个周期,机械波向前传播一个波长。

【学习材料】直径约1cm、长约10m的一条麻绳、横波演示器、秒表(或用手表代替)。

【学习形式】学生自主体验、教师适时指导。

【教材分析与课程设计思想】

“机械波的产生”一节内容,在初学者看来属于较难理解的内容,学生很容易把波的传播认为是介质中质点的迁移。波源的振动与波的传播之间关系很多学生容易产生混淆。在传统教学中,教师经过反复讲解和大量的练习,使一些学生记住了结论,但还是没能理解相应的内容。

在本节的--中,我们试图改变传统的教学方式,将教师的“讲解”变为学生的“亲身体验”,通过反复的“人浪”表演使学生体验到“机械波”由近向远的传播过程:①传播的是振动形式,振动质点并不随波迁移:②机械波传递过程中携带能量和信息:③振源振动一个周期,机械波向前传播一个波长。

然后请学生用麻绳演示机械波的传播,重复上述观点,强化观点。之后,进行实验研究:机械波传播的速度与介质有关,与振源振动的频率无关。最后,请学生分组演示并讲解“机械波是怎样产生的”,结束本节内容。

【课堂纪实】

1.将学生带到大厅(或小操场上),将学生均等地分成4队,手手相连,教师位于队伍中间,指导学生,如图1。

先让第2排学生进行“人浪”表演:从左起第一个人开始依次“蹲”“起”一次。其他同学观察。

然后让第2排的同学从中间断开,传到断开处,后面的学生不再动作。

教师提问:假设将每一位学生都看成“质元”,最左边的学生看作最先振动的质点(波源或振源),学生手手相连看作连续的“介质”(介质就是传播振动的物质),那么,只有振源的振动而没有传播振动的介质能产生机械波吗?

学生回答:不能。

教师提问:那么,机械波产生的条件是什么?

学生回答:振源的振动和传播振动的介质。

教师:机械振动在介质中的传播过程就是机械波。

2.先让第2排学生进行“人浪”表演:从左起第一个人开始依次“蹲”“起”一次。其他学生观察。

然后请第3排的学生重复表演一次,其他学生观察。

让1、2排学生交换位置,3、4排学生交换位置,重复表演一次,其他学生观察。

教师提问:机械波在传播过程中介质中的质点随波迁移吗?

学生回答:介质中的质点并不随波迁移。

教师提问:那传播的是什么?

学生回答:传播的是振动的形式。

教师提问:如果振源振动的幅度是1m,那么其他质点的振动幅度是多大?

学生回答:也是1m。

教师提问:如果振源振动的周期(完成一次全振动的时间)是2s,那么其他质点的振动周期是多大?

学生回答:也是2s。

教师提问:这说明了什么问题?

学生回答:振源怎么振动,介质中的其他质点也跟着怎样振动。

教师:这是否意味着机械波传播过程中携带着信息?

学生释然。

教师提问:机械波传播过程中携带能量吗?

学生回答:是的。

教师:那谁能给大家总结一下,机械波传播的特点?

学生:①机械波介质中的质点并不随波迁移。

教师:很好,请继续。

学生:②机械波传播过程中携带能量。

教师:还有吗?

学生:③机械波传播过程中携带信息。

教师:携带谁的信息?

学生:振源振动的信息。

3.教师请第3排学生按照要求进行表演:当第一位学生完成一次全振动后,其他学生立即停止动作,定格在这一时刻。

(学生妤像是没有明白教师的指令,或是这一过程较难完成,总之重复三次才勉强完成)

大致成如下形态,如图2。

教师提问:这大概是什么形状?

学生回答:正弦(余弦)波的形状。

教师:第9个质点刚要开始向下振动,与第1个质点步调一致。我们把两个相邻的、振动总是相同的两个质点之间的距离叫做一个波长。

教师提问:振源振动一个周期,振动从第1个质点传播到第9个质点,哪位学生总结一下?学生回答:振源振动一个周期,机械波在介质中传播的距离是一个波长。

教师:这说明机械波的传播具有周期性。

教师:在同种均匀介质中,机械波的传播是匀速的。如果用λ表示波长,T表示周期,则:v=λ/T。

4.用麻绳研究机械波的传播速度与哪些因素有关实验:请两位学生到队伍前面进行演示,两者相距约10m,各执绳的一端,一人不动,另一人上下抖动绳子,这样就有一列波从抖动的这一端向另一端传开来。

缓慢抖动绳子,产生的机械波的波长大:快速抖动绳子,产生的机械波的波长小。

再请出3个学生进行记录:在两种不同的抖动绳的条件下,由一端传到另一端所用的时间。

教师提问:通过实验,你能得出什么结论?

学生回答:波的传播速度相同。

教师:准确表达。

学生:在实验误差允许范围内,不论如何抖动绳子(快速、中速、慢速),从这一端传播到另一端所需要的时间相等。即波的传播速度是相同的,与波源振动周期(频率)无关。

教师:哪位同学能总结一下机械波的波长是由哪些因素决定的?是频率还是波速?是振源还是介质?

学生:两者共同决定的。

5.请学生手手相连围绕成一个圆,相邻两人同时动作,产生的波向两侧传播,形成的波是对称的。如图3所示。

6.按照分组原则,围绕教师,使用横波演示器,讲解机械波的产生过程。

教师首先分析讲解一遍,学生再讲解一遍,最后进行个别答疑和指导。按照从第1组,到第2组、第3组、第4组的顺序,全部完成一遍。保证照顾到每一位学生。

【教学反思】

本节课大量采用学生活动来完成学习任务。学生的活动和学习积极性十分高涨。本节课没有一个十分清晰的边界,没有完全按照教材编写的内容进行学习。学习的内容涉及教材中的三节内容:机械波的产生、描述机械波的物理量──波长、波速等等。在教学中创造一种接近真实的情景,通过学生的参与和感悟、通过学生的测量得到结论,形成机械波的概念,掌握机械波的规律。这种--完全符合“以学生为中心”的教育理念。学生在课堂中体验到物理学原来也可以这样“玩儿”,从本章的测验成绩可以看出,全班有45人的成绩达到90分以上,满分6人,最低分78分。我们认为,“自主体验课”无论从教学效果还是促进学生学习的发展方面都是很好的尝试。

扩展阅读

机械波教案


机械波
教学目标:
1.掌握机械波的产生条件和机械波的传播特点(规律);
2.掌握描述波的物理量——波速、周期、波长;
3.正确区分振动图象和波动图象,并能运用两个图象解决有关问题
4.知道波的特性:波的叠加、干涉、衍射;了解多普勒效应
教学重点:机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系)
教学难点:波的图象及相关应用
教学方法:讲练结合,计算机辅助教学
教学过程:
一、机械波
1.机械波的产生条件:①波源(机械振动)②传播振动的介质(相邻质点间存在相互作用力)。
2.机械波的分类
机械波可分为横波和纵波两种。
(1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。
(2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。
分类质点的振动方向和波的传播方向关系形状举例
横波垂直凹凸相间;有波峰、波谷绳波等
纵波在同一条直线上疏密相间;有密部、疏部弹簧波、声波等
说明:地震波既有横波,也有纵波。
3.机械波的传播
(1)在同一种均匀介质中机械波的传播是匀速的。波速、波长和频率之间满足公式:v=λf。
(2)介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。
(3)机械波转播的是振动形式、能量和信息。
(4)机械波的频率由波源决定,而传播速度由介质决定。
4.机械波的传播特点(规律):
(1)前带后,后跟前,运动状态向后传。即:各质点都做受迫振动,起振方向由波源来决定;且其振动频率(周期)都等于波源的振动频率(周期),但离波源越远的质点振动越滞后。
(2)机械波传播的是波源的振动形式和波源提供的能量,而不是质点。
5.机械波的反射、折射、干涉、衍射
一切波都能发生反射、折射、干涉、衍射。特别是干涉、衍射,是波特有的性质。
(1)干涉产生干涉的必要条件是:两列波源的频率必须相同。
需要说明的是:以上是发生干涉的必要条件,而不是充分条件。要发生干涉还要求两列波的振动方向相同(要上下振动就都是上下振动,要左右振动就都是左右振动),还要求相差恒定。我们经常列举的干涉都是相差为零的,也就是同向的。如果两个波源是振动是反向的,那么在干涉区域内振动加强和减弱的位置就正好颠倒过来了。
干涉区域内某点是振动最强点还是振动最弱点的充要条件:
①最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ
②最弱:该点到两个波源的路程之差是半波长的奇数倍,即
根据以上分析,在稳定的干涉区域内,振动加强点始终加强;振动减弱点始终减弱。
至于“波峰和波峰叠加得到振动加强点”,“波谷和波谷叠加也得到振动加强点”,“波峰和波谷叠加得到振动减弱点”这些都只是充分条件,不是必要条件。
【例1】如图所示,S1、S2是两个相干波源,它们振动同步且振幅相同。实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷。关于图中所标的a、b、c、d四点,下列说法中正确的有

A.该时刻a质点振动最弱,b、c质点振动最强,d质点振动既不是最强也不是最弱
B.该时刻a质点振动最弱,b、c、d质点振动都最强
C.a质点的振动始终是最弱的,b、c、d质点的振动始终是最强的
D.再过T/4后的时刻a、b、c三个质点都将处于各自的平衡位置,因此振动最弱
解析:该时刻a质点振动最弱,b、c质点振动最强,这不难理解。但是d既不是波峰和波峰叠加,又不是波谷和波谷叠加,如何判定其振动强弱?这就要用到充要条件:“到两波源的路程之差是波长的整数倍”时振动最强,从图中可以看出,d是S1、S2连线的中垂线上的一点,到S1、S2的距离相等,所以必然为振动最强点。
本题答案应选B、C
点评:描述振动强弱的物理量是振幅,而振幅不是位移。每个质点在振动过程中的位移是在不断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。
【例2】如图所示表示两列相干水波的叠加情况,图中的实线表示波峰,虚线表示波谷。设两列波的振幅均为5cm,且图示的范围内振幅不变,波速和波长分别为1m/s和0.5m。C点是BE连线的中点,下列说法中正确的是()
A.C、E两点都保持静止不动
B.图示时刻A、B两点的竖直高度差为20cm
C.图示时刻C点正处于平衡位置且向水面上运动
D.从图示的时刻起经0.25s,B点通过的路程为20cm
解析:由波的干涉知识可知图6中的质点A、B、E的连线处波峰和波峰或波谷和波谷叠加是加强区,过D、F的连线处和过P、Q的连线处波峰和波谷叠加是减弱区。C、E两点是振动的加强点,不可能静止不动。所以选项A是错误的。
在图示时刻,A在波峰,B在波谷,它们振动是加强的,振幅均为两列波的振幅之和,均为10cm,此时的高度差为20cm,所以B选项正确。
A、B、C、E均在振动加强区,且在同一条直线上,由题图可知波是由E处向A处传播,在图示时刻的波形图线如右图所示,由图可知C点向水面运动,所以C选项正确。
波的周期T=/v=0.5s,经过0.25s,即经过半个周期。在半个周期内,质点的路程为振幅的2倍,所以振动加强点B的路程为20cm,所以D选项正确。
点评:关于波的干涉,要正确理解稳定的干涉图样是表示加强区和减弱区的相对稳定,但加强区和减弱区还是在做振动,加强区里两列波分别引起质点分振动的方向是相同的,减弱区里两列波分别引起质点分振动的方向是相反的,发生变化的是振幅增大和减少的区别,而且波形图沿着波的传播方向在前进。
(2)衍射。
①波绕过障碍物的现象叫做波的衍射。
②能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多。
(3)波的独立传播原理和叠加原理。
独立传播原理:几列波相遇时,能够保持各自的运动状态继续传播,不互相影响。
叠加原理:介质质点的位移、速度、加速度都等于几列波单独转播时引起的位移、速度、加速度的矢量和。
波的独立传播原理和叠加原理并不矛盾。前者是描述波的性质:同时在同一介质中传播的几列波都是独立的。比如一个乐队中各种乐器发出的声波可以在空气中同时向外传播,我们仍然能分清其中各种乐器发出的不同声波。后者是描述介质质点的运动情况:每个介质质点的运动是各列波在该点引起的运动的矢量和。这好比老师给学生留作业:各个老师要留的作业与其他老师无关,是独立的;但每个学生要做的作业却是所有老师留的作业的总和。
【例3】如图中实线和虚线所示,振幅、周期、起振方向都相同的两列正弦波(都只有一个完整波形)沿同一条直线向相反方向传播,在相遇阶段(一个周期内),试画出每隔T/4后的波形图。并分析相遇后T/2时刻叠加区域内各质点的运动情况。
解析:根据波的独立传播原理和叠加原理可作出每隔T/4后的波形图如①②③④所示。
相遇后T/2时刻叠加区域内abcde各质点的位移都是零,但速度各不相同,其中a、c、e三质点速度最大,方向如图所示,而b、d两质点速度为零。这说明在叠加区域内,a、c、e三质点的振动是最强的,b、d两质点振动是最弱的。

6.多普勒效应
当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。
学习“多普勒效应”必须弄清的几个问题:
(1)当波源以速率v匀速靠近静止的观察者A时,观察者“感觉”到的频率变大了。但不是“越来越大”。
(2)当波源静止,观察者以速率v匀速靠近波源时,观察者“感觉”到的频率也变大了。
(3)当波源与观察者相向运动时,观察者“感觉”到的频率变大。
(4)当波源与观察者背向运动时,观察者“感觉”到的频率变小。

【例4】(2004年高考科研测试)a为声源,发出声波;b为接收者,接收a发出的声波。a、b若运动,只限于在沿两者连线方向上,下列说法正确的是
A.a静止,b向a运动,则b收到的声频比a发出的高
B.a、b向同一方向运动,则b收到的声频一定比a发出的高
C.a、b向同一方向运动,则b收到的声频一定比a发出的低
D.a、b都向相互背离的方向运动,则b收到的声频比a发出的高
答案:A

二、振动图象和波的图象
1.振动图象和波的图象
振动图象和波的图象从图形上看好象没有什么区别,但实际上它们有本质的区别。
(1)物理意义不同:振动图象表示同一质点在不同时刻的位移;波的图象表示介质中的各个质点在同一时刻的位移。
(2)图象的横坐标的单位不同:振动图象的横坐标表示时间;波的图象的横坐标表示距离。

(3)从振动图象上可以读出振幅和周期;从波的图象上可以读出振幅和波长。
简谐振动图象与简谐横波图象的列表比较:
简谐振动简谐横波



标横坐标时间介质中各质点的平衡位置
纵坐标质点的振动位移各质点在同一时刻的振动位移
研究对象一个质点介质中的大量质点
物理意义一个质点在不同时刻的振动位移介质中各质点在同一时刻的振动位移
随时间的变化原有图形不变,图线随时间而延伸原有波形沿波的传播方向平移
运动情况质点做简谐运动波在介质中匀速传播;介质中各质点做简谐振动
2.描述波的物理量——波速、周期、波长:
(1)波速v:运动状态或波形在介质中传播的速率;同一种波的波速由介质决定。
注:在横波中,某一波峰(波谷)在单位时间内传播的距离等于波速。
(2)周期T:即质点的振动周期;由波源决定。
(3)波长λ:在波动中,振动位移总是相同的两个相邻质点间的距离。
注:在横波中,两个相邻波峰(波谷)之间的距离为一个波长。
结论:
(1)波在一个周期内传播的距离恰好为波长。
由此:①v=λ/T=λf;λ=vT.②波长由波源和介质决定。
(2)质点振动nT(波传播nλ)时,波形不变。
(3)相隔波长整数倍的两质点,振动状态总相同;相隔半波长奇数倍的两质点,振动状态总相反。
3.波的图象的画法
波的图象中,波的图形、波的传播方向、某一介质质点的瞬时速度方向,这三者中已知任意两者,可以判定另一个。(口诀为“上坡下,下坡上”;或者“右上右、左上左))
4.波的传播是匀速的
在一个周期内,波形匀速向前推进一个波长。n个周期波形向前推进n个波长(n可以是任意正数)。因此在计算中既可以使用v=λf,也可以使用v=s/t,后者往往更方便。
5.介质质点的运动是简谐运动(是一种变加速运动)
任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A了。
6.起振方向
介质中每个质点开始振动的方向都和振源开始振动的方向相同。
【例5】在均匀介质中有一个振源S,它以50HZ的频率上下振动,该振动以40m/s的速度沿弹性绳向左、右两边传播。开始时刻S的速度方向向下,试画出在t=0.03s时刻的波形。
解析:从开始计时到t=0.03s经历了1.5个周期,波分别向左、右传播1.5个波长,该时刻波源S的速度方向向上,所以波形如右图所示。
【例6】如图所示是一列简谐横波在t=0时刻的波形图,已知这列波沿x轴正方向传播,波速为20m/s。P是离原点为2m的一个介质质点,则在t=0.17s时刻,质点P的:①速度和加速度都沿-y方向;②速度沿+y方向,加速度沿-y方向;③速度和加速度都正在增大;④速度正在增大,加速度正在减小。
以上四种判断中正确的是
A.只有①B.只有④
C.只有①④D.只有②③
解析:由已知,该波的波长λ=4m,波速v=20m/s,因此周期为T=λ/v=0.2s;因为波向右传播,所以t=0时刻P质点振动方向向下;0.75T0.17sT,所以P质点在其平衡位置上方,正在向平衡位置运动,位移为正,正在减小;速度为负,正在增大;加速度为负,正在减小。①④正确,选C
7.波动图象的应用:
(1)从图象上直接读出振幅、波长、任一质点在该时刻的振动位移。
(2)波动方向==振动方向。
方法:选择对应的半周,再由波动方向与振动方向“头头相对、尾尾相对”来判断。
如图:

【例7】如图是一列沿x轴正方向传播的机械波在某时刻的波
形图。由图可知:这列波的振幅为5cm,波长为4m。此时刻
P点的位移为2.5cm,速度方向为沿y轴正方向,加速度方向
沿y轴负方向;Q点的位移为-5cm,速度为0,加速度方
向沿y轴正方向。
【例8】如图是一列波在t1=0时刻的波形,波的传播速度
为2m/s,若传播方向沿x轴负向,则从t1=0到t2=2.5s的时间
内,质点M通过的路程为______,位移为_____。
解析:由图:波长λ=0.4m,又波速v=2m/s,可得:
周期T=0.2s,所以质点M振动了12.5T。
对于简谐振动,质点振动1T,通过的路程总是4A;振动0.5T,通过的路程总是2A。
所以,质点M通过的路程12×4A+2A=250cm=2.5m。质点M振动12.5T时仍在平衡位置。
所以位移为0。
【例9】在波的传播方向上,距离一定的P与Q点之间只有一个波谷的四种情况,如图A、B、C、D所示。已知这四列波在同一种介质中均向右传播,则质点P能首先达到波谷的是()
解析:四列波在同一种介质中传播,则波速v应相同。由T=λ/v得:TDTA=TBTC;
再结合波动方向和振动方向的关系得:C图中的P点首先达到波谷。
(3)两个时刻的波形问题:设质点的振动时间(波的传播时间)为t,波传播的距离为x。
则:t=nT+△t即有x=nλ+△x(△x=v△t)且质点振动nT(波传播nλ)时,波形不变。
①根据某时刻的波形,画另一时刻的波形。
方法1:波形平移法:当波传播距离x=nλ+△x时,波形平移△x即可。
方法2:特殊质点振动法:当波传播时间t=nT+△t时,根据振动方向判断相邻特殊点(峰点,谷点,平衡点)振动△t后的位置进而确定波形。
②根据两时刻的波形,求某些物理量(周期、波速、传播方向等)
【例10】如图是一列向右传播的简谐横波在某时刻的波形图。
已知波速v=0.5m/s,画出该时刻7s前及7s后的瞬时波形图。
解析:λ=2m,v=0.5m/s,T==4s.所以⑴波在7s内传播
的距离为x=vt=3.5m=1λ⑵质点振动时间为1T。
方法1波形平移法:现有波形向右平移λ可得7s后的波形;
现有波形向左平移λ可得7s前的波形。
由上得到图中7s后的瞬时波形图(粗实线)和7s前的瞬时波形图(虚线)。
方法2特殊质点振动法:根据波动方向和振动方向的关系,确定两个特殊点(如平衡点和峰点)在3T/4前和3T/4后的位置进而确定波形。请读者试着自行分析画出波形。
【例11】如图实线是某时刻的波形图象,虚线是经过0.2s
时的波形图象。求:
①波传播的可能距离②可能的周期(频率)
③可能的波速④若波速是35m/s,求波的传播方向
⑤若0.2s小于一个周期时,传播的距离、周期(频率)、波速。
解析:
①题中没给出波的传播方向,所以有两种可能:向左传播或向右传播。
向左传播时,传播的距离为x=nλ+3λ/4=(4n+3)m(n=0、1、2…)
向右传播时,传播的距离为x=nλ+λ/4=(4n+1)m(n=0、1、2…)
②向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8/(4n+3)(n=0、1、2…)
向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8/(4n+1)(n=0、1、2…)
③计算波速,有两种方法。v=x/t或v=λ/T
向左传播时,v=x/t=(4n+3)/0.2=(20n+15)m/s.或v=λ/T=4(4n+3)/0.8=(20n+15)m/s.(n=0、1、2…)
向右传播时,v=x/t=(4n+1)/0.2=(20n+5)m/s.或v=λ/T=4(4n+1)/0.8=(20n+5)m/s.(n=0、1、2…)
④若波速是35m/s,则波在0.2s内传播的距离为x=vt=35×0.2m=7m=1λ,所以波向左传播。
⑤若0.2s小于一个周期,说明波在0.2s内传播的距离小于一个波长。则:
向左传播时,传播的距离x=3λ/4=3m;传播的时间t=3T/4得:周期T=0.267s;波速v=15m/s.向右传播时,传播的距离为λ/4=1m;传播的时间t=T/4得:周期T=0.8s;波速v=5m/s.
点评:做此类问题的选择题时,可用答案代入检验法。
(4)根据波的传播特点(运动状态向后传)确定某质点的运动状态问题:
【例12】一列波在介质中向某一方向传播,如图是此波在某一时刻的波形图,且此时振动还只发生在M、N之间,并知此波的周期为T,Q质点速度方向在波形中是向下的。则:波源是_____;P质点的起振方向为_________;从波源起振开始计时时,P点已经振动的时间为______。
解析:由Q点的振动方向可知波向左传播,N是波源。
由M点的起振方向(向上)得P质点的起振方向向上。振动从N点传播到M点需要1T,传播到P点需要3T/4,所以质点P已经振动的时间为T/4.
【例13】如图是一列向右传播的简谐横波在t=0时刻(开始计时)的波形图,已知在t=1s时,B点第三次达到波峰(在1s内B点有三次达到波峰)。则:
①周期为________②波速为______;
③D点起振的方向为_________;④在t=____s时刻,此波传到D点;在t=____s和t=___s时D点分别首次达到波峰和波谷;在t=____s和t=___s时D点分别第二次达到波峰和波谷。
解析:
①B点从t=0时刻开始在经过t=2.5T=1s第三次达到波峰,故周期T=0.4s.
②由v=λ/T=10m/s.
③D点的起振方向与介质中各质点的起振方向相同。在图示时刻,C点恰好开始起振,由波动方向可知C点起振方向向下。所以,D点起振方向也是向下。
④从图示状态开始计时:此波传到D点需要的时间等于波从C点传播到D需要的时间,即:t=(45-4)/10=4.1s;D点首次达到波峰的时间等于A质点的振动状态传到D点需要的时间,即:t=(45-1)/10=4.4s;D点首次达到波谷的时间等于B质点的振动状态传到D点需要的时间,即:t=(45-3)/10=4.2s;D点第二次达到波峰的时间等于D点首次达到波峰的时间再加上一个周期,即:t=4.4s+0.4s=4.8s.D点第二次达到波谷的时间等于D点首次达到波峰的时间再加上一个周期,即:t=4.2s+0.4s=4.6s.
【例14】已知在t1时刻简谐横波的波形如图中实线所示;在时刻t2该波的波形如图中虚线所示。t2-t1=0.02s。求:
(1)该波可能的传播速度。
(2)若已知Tt2-t12T,且图中P质点在t1时刻的瞬时速度方向向上,求可能的波速。
(3)若0.01sT0.02s,且从t1时刻起,图中Q质点比R质点先回到平衡位置,求可能的波速。
解析:(1)如果这列简谐横波是向右传播的,在t2-t1内波形向右匀速传播了,所以波速=100(3n+1)m/s(n=0,1,2,…);同理可得若该波是向左传播的,可能的波速v=100(3n+2)m/s(n=0,1,2,…)
(2)P质点速度向上,说明波向左传播,Tt2-t12T,说明这段时间内波只可能是向左传播了5/3个波长,所以速度是唯一的:v=500m/s
(3)“Q比R先回到平衡位置”,说明波只能是向右传播的,而0.01sT0.02s,也就是T0.02s2T,所以这段时间内波只可能向右传播了4/3个波长,解也是唯一的:v=400m/s
三、声波
1.空气中的声波是纵波。
2.空气中的声速可认为是340m/s,水中的声速是1450m/s,铁中的声速是5400m/s。
3.人耳可以听到的声波的频率范围是20Hz-20000Hz。频率低于20Hz的声波叫次声波,频率高于20000Hz的声波叫超声波。
4.人耳只能区分开相差0.1s以上的两个声音。
5.声波也能发生反射、干涉和衍射等现象。声波的共振现象称为声波的共鸣。
四、针对训练
1.(2004年全国理综卷)一列简谐横波沿x轴负方向传播,图1是t=1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同一时间起点),则图2可能是图1中哪个质元的振动图线?
A.x=0处的质元B.x=1m处的质元
C.x=2m处的质元D.x=3m处的质元
2.图中是观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O为波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间距离表示一个波长,则波经过孔之后的传播情况,下列描述正确的是:
A.此时能明显观察到波的衍射现象;
B.挡板前后波纹间距离相等;
C.如果将孔AB扩大,有可能观察不到明显的衍射现象;
D.如果孔的大小不变,使波源频率增大,能更明显地观察到衍射现象。
3.(2002年广东、广西卷)一列在竖直方向振动的简谐横波,波长为λ,沿x轴正方向传播.某一时刻,在振动位移向上且大小等于振幅一半的各点中,任取相邻的两点P1、P2,已知P1的x坐标小于P2的x坐标.
A.若<,则P1向下运动,P2向上运动
B.若<,则P1向上运动,P2向下运动
C.若>,则P1向上运动,P2向下运动
D.若>,则P1向下运动,P2向上运动
4.如图所示,一根张紧的水平弹性长绳上的a、b两点,相距14.0m,b点在a点的右方.当一列简谐横波沿此绳向右传播时,若a点的位移达到正极大时,b点的位移恰为零,且向下运动.经过1.00s后,a点的位移为零,且向下运动,而b点的位移恰达到负极大.则这简谐横波的波速可能等于
A.14m/sB.10m/sC.6m/sD.4.67m/s
5.简谐横波在某时刻的波形图线如图所示,由此图可知
A.若质点a向下运动,则波是从左向右传播的
B.若质点b向上运动,则波是从左向右传播的
C.若波从右向左传播,则质点c向下运动
D.若波从右向左传播,则质点d向上运动
6.如图所示,O是波源,a、b、c、d是波传播方向上各质点的平衡位置,且Oa=ab=bc=cd=3m,开始各质点均静止在平衡位置,t=0时波源O开始向上做简谐运动,振幅是0.1m,波沿Ox方向传播,波长是8m,当O点振动了一段时间后,经过的路程是0.5m,各质点运动的方向是
A.a质点向上B.b质点向上C.c质点向下D.d质点向下
7.如图在xy平面内有一沿x轴正方向传播的简谐横波,波速为1m/s,振幅为4cm,频率为2.5Hz.在t=0时刻,P点位于其平衡位置上方最大位移处,则距P为0.2m的Q点(见图)
A.在0.1s时的位移是4cmB.在0.1s时的速度最大
C.在0.1s时的速度向下D.在0到0.1s时间内的路程是4cm
8.一列简谐横波,在t=0时刻的波形如图8-13所示,自右向左传播,已知在t1=0.7s时,P点出现第二次波峰(0.7s内P点出现两次波峰),Q点的坐标是(-7,0),则以下判断中正确的是
A.质点A和质点B在t=0时刻的位移是相等的
B.在t=0时刻,质点C向上运动
C..在t2=0.9s末,Q点第一次出现波峰
D.在t3=1.26s末,Q点第一次出现波峰
9.如图所示,一列沿x正方向传播的简谐横波,波速大小为0.6m/s,P点的横坐标为96cm,从图中状态开始计时,求:
(1)经过多长时间,P质点开始振动,振动时方向如何?
(2)经过多少时间,P质点第一次到达波峰?
参考答案:
1.A2.ABC3.AC4.BD
5.BD6.A7.BD8.BC
9.解析:开始计时时,这列波的最前端的质点坐标是24cm,根据波的传播方向,可知这一点沿y轴负方向运动,因此在波前进方向的每一个质点开始振动的方向都是沿y轴负方向运动,故P点开始振动时的方向是沿y轴负方向,P质点开始振动的时间是
(1)t==1.2s
(2)用两种方法求解
质点振动法:这列波的波长是λ=0.24m,故周期是
T==0.4s
经过1.2s,P质点开始振动,振动时方向向下,故还要经过T才能第一次到达波峰,因此所用时间是1.2s+0.3s=1.5s.
波形移动法:质点P第一次到达波峰,即初始时刻这列波的波峰传到P点,因此所用的时间是
t′==1.5s

机械振动与机械波


机械振动
1、判断简谐振动的方法
简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m.
要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
2、简谐运动中各物理量的变化特点
简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x存在直接或间接关系:
如果弄清了上述关系,就很容易判断各物理量的变化情况
3、简谐运动的对称性
简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。
理解好对称性这一点对解决有关问题很有帮助。
4、简谐运动的周期性
5、简谐运动图象
简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。
6、受迫振动与共振
(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。○2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。
(3)理解共振曲线的意义
单摆
考点分析:
一、周期公式的理解
1、周期与质量、振幅无关
2、等效摆长
3、等效重力加速度
二、摆钟快慢问题
三、利用周期公式求重力加速度,进而求高度
四、单摆与其他力学知识的综合
机械波
二、考点分析:
①.波的波速、波长、频率、周期和介质的关系:
②.判定波的传播方向与质点的振动方向
方法一:同侧原理波的传播方向与质点的振动方向均位于波形的同侧。
方法二:逆描波形法用笔沿波形逆着波的传播方向描,笔势向上该处质点振动方向即向
③、已知波的图象,求某质点的坐标,波速,振动图象等
④已知波速V和波形,作出再经Δt时间后的波形图
方法一、平移法:先算出经Δt时间波传播的距离Δx=VΔt,再把波形沿波的传播方向平移Δx即可。因为波动图象的重复性,若已知波长λ,则波形平移n个λ时波形不变,当Δx=nλ+x时,可采取去nλ留零x的方法,只需平移x即可。
方法二、特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形。
⑤已知某质点的振动图象和某时刻的波动图象进行分析计算
⑥已知某两质点的振动图象进行分析计算
⑦已知某两时刻的波动图象进行分析计算。

高三物理教案:《机械振动与机械波》教学设计


古人云,工欲善其事,必先利其器。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在课堂积极的参与互动,使教师有一个简单易懂的教学思路。你知道如何去写好一份优秀的教案呢?下面的内容是小编为大家整理的高三物理教案:《机械振动与机械波》教学设计,希望对您的工作和生活有所帮助。

本文题目:高三物理教案:机械振动与机械波

1、判断简谐振动的方法

简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m.

要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点

简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x存在直接或间接关系:

如果弄清了上述关系,就很容易判断各物理量的变化情况

3、简谐运动的对称性

简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性

5、简谐运动图象

简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振

(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。○2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。

(3)理解共振曲线的意义

单摆

考点分析:

一、 周期公式的理解

1、周期与质量、振幅无关

2、等效摆长

3、等效重力加速度

二、 摆钟快慢问题

三、 利用周期公式求重力加速度,进而求高度

四、 单摆与其他力学知识的综合

机械波

二、考点分析:

①.波的波速、波长、频率、周期和介质的关系:

②.判定波的传播方向与质点的振动方向

方法一:同侧原理波的传播方向与质点的振动方向均位于波形的同侧。

方法二:逆描波形法用笔沿波形逆着波的传播方向描,笔势向上该处质点振动方向即向

③、已知波的图象,求某质点的坐标,波速,振动图象等

④已知波速V和波形,作出再经Δt时间后的波形图

方法一、平移法:先算出经Δt时间波传播的距离Δx=VΔt,再把波形沿波的传播方向平移Δx即可。因为波动图象的重复性,若已知波长λ,则波形平移n个λ时波形不变,当Δx=nλ+x时,可采取去nλ留零x的方法,只需平移x即可。

方法二、特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形。

⑤已知某质点的振动图象和某时刻的波动图象进行分析计算

⑥已知某两质点的振动图象进行分析计算

⑦已知某两时刻的波动图象进行分析计算。

高考物理机械振动与机械波复习


第十四章机械振动与机械波

1.本章主要描述的是机械振动的公式和图象,波的图象,波长,频率,波速关系。
2.高考中以选择题形式考查为主,考查对基础知识的掌握与理解。复习时要真正搞懂振动与波的关系及两个图象的物理意义,明确振动与波的关系,注意其空间和时间上的周期性。

第一课时简谐振动和图象

【教学要求】
1.会用简谐运动的公式和图象描述简谐运动
2.掌握简谐运动各物理量的变化规律
【知识再现】
一.机械振动
1.定义:物体(或物体的一部分)在某一中心位置附近所做的往复运动.
2.回复力:使振动物体返回平衡位置的力.
①.回复力是以命名的力,时刻指向.
②.回复力可能是几个力的合力,可能是某一个力,还可能是某一个力的分力.因而回复力不一定等于物体的合外力.
3.平衡位置:振动过程中回复力为零的位置.
二.简谐运动
1.定义:物体在跟成正比,并且总是指向的回复力作用下的振动.
2.简谐运动的特征
①受力特征:回复力满足F=
②运动特征:加速度工能力
3.表达式:x=Asin(ωt+φ),其中表示初相,表示相位。
4.描述简谐运动的物理.
①位移:由指向振动质点所在位置的有向线段,它是量.
②振幅:振动物体离开平衡位置的,它是量.
③周期T和频率f:物体完成所需的时间叫周期,单位时间内完成的次数叫频率,二者的关系。
知识点一简谐振动的平衡位置
平衡位置的特点:
(1)平衡位置的回复力为零;
(2)平衡位置不一定是合力为零的位置,如单摆当摆球运动到平衡位置时受力是不平衡;
(3)同一振子在不同振动系统中平衡位置不一定相同:如弹簧振子水平放在光滑静止地面上的平衡位置,弹簧的平衡位置处于原长,在竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置.
【应用1】简谐运动的平衡位置是指()
A.速度为零的位置B.回复力为零的位置
C.加速度为零的位置D.位移最大的位置

知识点二简谐运动的周期性和对称性
简谐运动的特点
1.动力学特点:F=-kx,负号表示回复力方向跟位移方向相反,k表示回复力系数。
2.运动学特征:简谐运动是变加速运动,运动物体的位移、速度、加速度的变化具有周期性和对称性.
(1)位移:振动物体的位移是物体相对平衡位置的位移;它总是由平衡位置指向物体所在位置的有向线段。
注意:区分振动物体的某时刻的位移跟某段时间内的位移,两者“起始点”的意义不同.
(2)速度:简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向.
(3)加速度:由力与加速度的瞬时对应关系可知,加速度与回复力的变化步调相同,即物体处在最大位移处时加速度最大,物体处于平衡位里时加速度最小(为零).物体经平衡位里时,加速度方向发生变化.
【应用2】一弹簧振子做简谐运动.周期为T,下列说法正确的有()
A.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍
B.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍
C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等
D.若△t=T,则在t时刻和(t+△t)时刻振子运动的加速度一定相同
导示:若△t=T/2或△t=nT-T/2,(n=1,2,3....),则在t和(t+△t)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻振子的位移、回复力、加速度、速度等均大小相等,方向相反。但在这两时刻弹簧的长度并不一定相等(只有当振子在这两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t和(t+△t),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等,方向相反,则△t一定等于△t=T/2的奇数倍。如果仅仅是振子的速度在t和(t+△t),两时刻大小相等方向相反,那么不能得出△t与T/2的关系,根据以上分析.A、C选项均错.
若t和(t+△t)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则△t=nT(n=1,2,,3…),但仅仅根据两时刻振子的位移相同,不能得出△t=nT.所以B这项错,D选项正确。
(1)简谐运动的物体经过1个或n个周期后,能回复到原来的状态,各物理量均又相同.因此,在解题时要注意到多解的可能性或需要写出解答结果的通式.
(2)在关于平衡位置对称的两个位置,动能、势能对应相等,回复力、加速度大小相等,方向相反;速度大小相等,方向可相同,也可相反,以及运动时间的对称性。

知识点三简谐运动的图象
1.物理意义
表示振动物体偏离平衡位置的位移x随时间t的变化规律.
注意:振动图象不是质点的运动轨迹.
2.图象的特点
简谐运动的图象是正弦(或余弦)曲线.
3.振动图象的应用
(1)可直观地读取振幅A、周期T及各时刻的位移x及各时刻振动速度方向.
(2)判定回复力、加速度方向(总指向时间轴)
(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.
(4)某段时间内振子的路程.

类型一简谐振动的证明问题
【例1】证明竖直方向的弹簧振子所做的运动是简谐振动。
导示:设物体的重为G,弹簧的劲度系数为k,物体处于平衡位置时弹簧的伸长量为l1,则G=kl1
当物体偏离平衡位置的位移为l时,弹簧的伸长量为l2,则l=l2-l1
取竖直向下为正,此时弹簧振子的回复力为
F回=G-kl2=kl1-kl2=-kl
所以,竖直方向的弹簧振子所做的运动是简谐振动。
判断某振动是否属于简谐运动,关键在于受力分析.先找出回复力的来源,然后取平衡位置为坐标原点,并规定正方向,得出回复力的表达式;再对照判别式F=一kx作出判断.在判断时要注意,回复力是指振动物体在振动方向上的合外力。
类型二振动的表达式及相位考查
【例2】物体沿x轴做简谐运动,振幅为8cm,频率为0.5Hz,在t=0时,位移是4cm,且向x轴负方向运动,试写出用正弦函数表示的振动方程。
导示:A=0.08m,ω=2πf=πHz,所以x=0.08sin(πt+φ)(m),将t=0时x=0.04m代入得0.04=0.08sinφ,初相φ=π/6或5π/6,因为t=0时速度方向沿x轴负方向,即位移在减小,所以取φ=5π/6。
所以振动方程x=0.08sin(πt+5π/6)(m)
同一振动用不同函数表示时,相位不同,而且相位ωt+φ是随时间t变化的一个变量。
类型三简谐振动的图象问题
【例3】(山东省沂源一中08高三物理检测试题)劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在
A.图中A点对应的时刻,振子所受的弹力大小为0.5N,方向指向x轴的负方向
B.图中A点对应的时刻,振子的速度方向指向x轴的正方向
C.在0~4s内振子作了1.75次全振动
D.在0~4s内振子通过的路程为3cm,位移为0
导示:由图可知A在t轴上方,位移x=0.25cm,所以弹力F=-kx=-5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确.由图可看出,振子振动T=2s,在0~4s内完成两次全振动,选项C错误.同理在0~4s内振子的位移为零,又A=0.5cm,所以在这段时间内振子通过的路程为2×4×0.50cm=4cm,故选项D错误.
综上所述,该题的正确选项为B.
1.一质点做简谐运动的图象如图所示,该质点在t=3.5s时刻()
A.速度为正、加速度为正
B.速度为负、加速度为负
C.速度为负、加速度为正
D.速度为正、加速度为负
2.(2007年苏锡常镇四市一模)一个作简谐运动的物体,位移随时间的变化规律x=Asinωt,在1/4周期内通过的路程可能是()
A.小于AB.等于A
C.等于2AD.等于1.5A
3.一个做简谐运动的物体连续通过某一位置的时间间隔为1s,紧接着再经过0.4s到达平衡位置,则简谐运动的周期为()
A.1.2sB.2.4sC.3.6sD.4.8s

4.如下图所示的简谐运动图象中,在t1和t2时刻,运动质点相同的量为()
A.加速度
B.位移
C.速度
D.回复力

5.水平放置作简谐运动的弹簧振子,质量为m,振动过程中的最大速率为v,下列正确的有(BC)
A.任半个周期内,弹力做的功可能是0~mv2/2之间的某个值
B.任半个周期内,弹力做的功一定为零
C.任半个周期内,速度的变化量大小可能为0~2v间的某个值
D.任半个周期内,速度变化量大小一定为零

5.如图所示,一个劲度系数为k的轻弹簧竖直立在桌面上,下端固定在桌面上,上端与质量为M的金属盘固定连接,金属盘内放一个质量为m的砝码。先让砝码随金属盘一起在竖直方向做简谐运动。⑴为使砝码不脱离金属盘,振幅最大不能超过多少?
⑵振动过程中砝码对金属盘的最大压力是多少?

参考答案1.D2.ABC3.AC4.C
5.BC6.;2mg

文章来源:http://m.jab88.com/j/45772.html

更多

最新更新

更多