88教案网

9.1.2不等式的性质(3)

教案课件是老师上课中很重要的一个课件,大家应该要写教案课件了。只有制定教案课件工作计划,新的工作才会如鱼得水!你们会写适合教案课件的范文吗?小编特地为您收集整理“9.1.2不等式的性质(3)”,仅供您在工作和学习中参考。

9.1.2不等式的性质(3)

教学目标1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;
2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;
3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
教学难点熟练并准确地解一元一次不等式。
知识重点熟练并准确地解一元一次不等式。
教学过程(师生活动)设计理念

提出问题某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.以学生身边的事例为背景,突出不等式与现实的联系,这个问题为契机引入新课,可以激发学生的学习兴趣。
探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1)x≤50(2)-4x3
(3)7-3x≤10(4)2x-33x+1
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。不同层次的学生经过尝试会有不同的收获.一些学生能独
立解决;还有一些学生虽不能解答,但在老师的引导下也能受到启发,这比单纯的教师讲解更能调动学习的积极性.另外,由学生自己来纠错,可培养他们的批
判性思维和语言表达能力.
比较不等式与解方程的异同中渗透着类比思想.
巩固新知1、解下列不等式,并在数轴上表示解集:
(1)(2)-8x10
2、用不等式表示下列语句并写出解集:
(1)x的3倍大于或等于1;(2)y的的差不大于-2.
解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?让学生在解决问题的过程中深刻感悟数学来源于实践,又服务于实践,以培养他们的数学应用意识。
总结归纳围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习,我取得了哪些收获?
3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨.让学生自己归纳小结,给学生创造自我评价和自我表现的机会,以达到激发兴趣、巩固知识的目的。
小结与作业
布置作业1、必做题:教科书第134~135页习题9.1第6题(3)(4)第10题。
2、选做题:教科书第135页习题9、12题.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
通过创设与学生实际生活密切联系的向题情境,并由学生根据自己掌握的知识与经验列出不等式,探究它的解法,可以激发学生的学习动力,唤起他们的求知欲望,促使学生动脑、动手、动口,积极参与教学的整个过程,在教师的指导下,主动地、生动活泼地、富有个性地学习.
新课程理念要求教师向学生提供充分的从事数学活动的机会.本课教学过程中贯穿了“尝试—引导—示范—归纳—练习—点评”等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式.教师的组织者、引导者与合作者的角色在这节课中得到了充分的演绎.教师要尊重学生的个体差异,满足多样化学习的需求.对学习确实有困难的学生,要及时给予关心和帮助,鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点.除了演好组织者、引导者的角色外,教师还应争当“伯乐”和“雷锋”,多给学生以赞许、鼓励、关爱和帮助,让他们在积极愉悦的氛围中努力学习.

扩展阅读

9.1.2不等式的性质(2)


9.1.2不等式的性质(2)

教学目标1、会根据“不等式性质1解简单的一元一次不等式,并能在数轴上表示其解集;
2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;
3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.
教学难点根据“不等式性质1”正确地解一元一次不等式。
知识重点根据“不等式性质1”正确地解一元一次不等式。
教学过程(师生活动)设计理念

提出问题小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?
1、若设小希2、上午x点从家里出发才能不3、迟到,4、则x应满足怎样的关系式?
5、你会解这个不6、等式吗?请说说解的过程.
7、你能把这个不8、等式的解集在数轴上表示出来吗?设里一个学生很熟悉的问题情境,能增强亲和力.经历由具体的实例建立不等式模型的过程,既可让学生感受不等式在实际生活中的应用,又非常自然地引入新课.
探究新知1、分组探讨:对上述三个问题,2、你是如何考虑的?先独立思考然后组内交流,3、作出记录,4、最后各组派代表发主。
5、在学生充分讨论的基础上,6、师生共同7、归纳得出:
(1)x应满足的关系是:≤8
(2)根据“不(3)等式性质1”,在不(4)等式的两边减去,(5)得:x+-(6)≤8-(7),(8)即x≤
(9)这个不(10)等式的解集在数轴上表示如下:
我们在表示的点上画实心圆点,意思是取值范围包括这个数。
8、例题
解下列不等式,并在数轴上表示解集:
(1)3x2x+1(2)3-5x≥4-6x
师生共同探讨后得出:上述求解过程相当于由3x
2x+1,得3x-2x1;由3-5x≥4-6x,得-5x+6x≥4-3.这类似于解方程中的“移项”.可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
最后由教师完整地板书解题过程.培养学生主动参与、合作交流的意识,提主同学生的观察、分析、概括和抽象能力
强调“≤”与“”在意义上和数轴表示上的区别。

类比解方程的方法,让学生初步感觉不等式与方程的关系。
巩固新知1、解下列不等式,并在数轴上表示解集:
(1)x+5>-1(2)4x3x-5(3)8x-27x+3
2、用不等式表示下列语句并写出解集:
(1)x与3的和不小于6;
(2)y与1的差不大于0.进一步巩固所学知识。
解决问题

1、某容器呈长方体形状,长5cm,宽3cm,高10cm.容器内原有水的高度为3cm。现准备继续向它注水.用Vcm,示新注入水的体积,写出V的取值范围。
2、三角形任意两边之差与第三边有着怎样的大小关系?提出这类实际问题,容易引起学生关注,激发他们参与学习
的热情.同时能体会到生活中蕴含着数学知识,反过来数学知识又帮助解决了生活中的许多实际问题,从而感受到新知识的用途.
总结归纳师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法。还明白了生活中的许多实际问题都是可以用不等式的知识去解决的。
小结与作业
布置作业1、必做题:教科书第134页习题9.1第6题(1)(2)
2、选做题:教科书第134页习题9、12题.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课从发生在学生身边的事情入手,创设问题情境,激发学生的学习兴趣和求知欲望.以问题为中心,使每一位学生都能积极思考,发散思维.让学生在“做数学”的过程中,亲身体验问题的发生、发现、发展与解决的全过程,采取自主探索、合作交流、深人研讨、步步为营的措施,为学生营造一个自主学习、主动发展的广阔空间,开辟探究、研讨、解决问题的广阔天地,使学生快快乐乐地成为学习的主人.
教学要以实际生活为背景.学生亲身经历过现实问题数学化的过程,就会获得富有生命力的数学知识,进一步认识数学,体验数学的价值.只有让学生真切地体会到生活中处处有数学,才有生活中处处用数学的可能,以此培养学生的应用意识.
教师在教学中要敢于打破教材格局.本课对教材作出全新的调整,注重以问题为线索来探究不等式的解法,再用所学知识去解决问题.放开手脚让每个学生从不同的角度、用不同的方法充分展现“自我”,真正构建起学生的课堂主人的地位,使他们的思维能力、情感态度和价值观念等各个方面都能迈上一个新的台阶.

9.1.2不等式的性质(1)


9.1.2不等式的性质(1)

教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;
2、初步体会不等式与等式的异同;
3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.
教学难点正确运用不等式的性质。
知识重点理解并掌握不等式的性质。
教学过程(师生活动)设计理念

提出问题教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:
1、天平被调整到什么状态?
2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?
3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。
探究新知1、用“>”或“<”填空.
(1)-13-1+23+2-1-33-3
(2)535+a3+a5-a3-a
(3)626×52×56×(-5)2×(-5)
(4)-23(-2)×63×6
(-2)×(-6)3×(一6)
(5)-4>-6(-4)÷2(-6)÷2
(-4)十(-2)(-6)十(-2)
2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.
3、让学生充分发表“发现”,师生共同归纳得出:
不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.
不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、你能说出不等式性质与等式性质的相同之处与不同
之处吗?通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣。

渗透类比思想。
探究新知4、下列哪些是不5、等式x+36的解?哪些不6、是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解集,并在数轴上表示出来:
(1)x+36(2)2x8(3)x-20
巩固新知1、判断
(1)∵ab∴a-bb-b
(2)∵ab∴
(3)∵ab∴-2a-2b
(4)∵-2a0∴a0
(5)∵-a0∴a3
2、填空
(1)∵2a3a∴a是数
(2)∵∴a是数
(3)∵axa且x1∴a是数
3、根据下列已知条件,4、说出a与b的不5、等关系,6、并说明是根据不7、等式哪一条性质。
(1)a-3b-3(2)
(3)-4a-4b设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。
总结归纳

在学生自己总结的基础上,教师应强调两点:
1、等式性质与不等式性质的不同之处;
2、在运用“不等式性质3时应注意的问题.学生通过总结,可以帮助自
己从整体上把握本节课所学知
识,培养良好的学习习惯,也为
下节课学好解不等式打下基础。
小结与作业
布置作业1、必做题:教科书第134页习题9.1第4、5题
2、选做题:教科书第134页习题9.1第7题.
3、备选题:
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.
教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.
为了突破教学难点,让学生能熟练准确地运用“不等式性质3,本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.

不等式的基本性质


课题:§5.2不等式的基本性质
教学目标:
知识目标:掌握不等式的基本性质.
能力目标:通过不等式基本性质的探索,培养学生观察、猜想、验证的能力.
情感目标:经历不等式基本性质的探索过程,初步体会不等式与等式的异同.
教学重、难点:
1、重点:掌握不等式的基本性质.
2、难点:不等式的基本性质2和3.
教学准备:
教师准备:课件.
教学设计过程:
一、创设情境,探究新知:
1、合作学习
(1)已知a<b和b<c,在数轴上表示如图5-9.
由数轴上a和c的位置关系,你能得出什么结论?你那举几个具体的例子说明吗?
(2)观察:用“”或“”填空,并找一找其中的规律.
①53,5+2____3+2,5-2____3-2;
②–13,-1+2____3+2,-1-3____3-3;
③6>2,6×5____2×5,6×(-5)____2×(-5);
④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6)
会发现:当不等式两边加或减去同一个数时,不等号的方向不变
当不等式的两边同乘同一个正数时,不等号的方向_不变;而乘同一个负数时,不等号的方向改变.
2、归纳
不等式的基本性质1若a<b和b<c,则a<c.
这个性质也叫做不等式的传递性.
不等式的基本性质2不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。

如果a>b,那么a+c>b+c,a-c>b-c;
如果a<b,那么a+c<b+c,a-c<b-c.
不等式的基本性质3不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.

如果a>b,且c>0,那么ac>bc,>;
如果a>b,且c<0,那么ac<bc,<;
3、做一做P104
4、试一试
(1)若-m5,则m___-5.
(2)如果x/y0那么xy___0.
(3)如果a-1,那么a-b___-1-b.
5、做一做P105
6、讲解例题
已知a<0,试比较2a与a的大小.
分析比较2a与a的大小,可以利用不等式的基本性质,也可以利用数轴,直接得出2a与a的大小.
二、巩固反思:
1、P106T1、T2“
2、探究活动
比较等式与不等式的基本性质.
例如,等式是否有与不等式的基本性质1类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比.(请与你的伙伴交流)
三、小结:
通过这节课的学习,你有哪些收获?
四、作业:
1、作业题P107
2、预习5.3

文章来源:http://m.jab88.com/j/45381.html

更多

最新更新

更多