88教案网

高二数学平面向量的分解定理003

一位优秀的教师不打无准备之仗,会提前做好准备,作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师更好的完成实现教学目标。怎么才能让教案写的更加全面呢?为了让您在使用时更加简单方便,下面是小编整理的“高二数学平面向量的分解定理003”,相信能对大家有所帮助。

8.3平面向量的分解定理
一、教学目标
1.理解和掌握平面向量的分解定理;
2.掌握平面内任一向量都可以用两个不平行向量来表示;掌握基的概念,并能够用基表示平面内的向量;
3.根据学生已有的物理知识经验,在熟悉的问题情景中,体会研究向量分解的必要性。
4.经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想。
二、教学重点及难点:平面向量分解定理的发现和形成过程;分解唯一性的说明。
三、教学过程设计
(一)、设置情景,引入课题
(1)观察
前面我们学过向量的加法,知道两个向量可以合成一个向量,反过来,一个向量是否可以分解成两个向量呢?
下面让我们来看一个实例:
实例:一盏电灯,可以由电线CO吊在天花板上,也可以由电线OA和绳BO拉住.CO所受的力F与电灯重力平衡,拉力F可以分解为AO与BO所受的拉力F1和F2.

思考:从这个实例我们看到了什么?
答:一个向量可以分成两个不同方向的向量.
(2)复习正交分解,并抽象为数学模型

(二)、探索探究,主动建构

概括讨论,提出新问题:
如果向量是同一平面内的两个不平行的向量,是该平面内的一个非零向量,是否能用向量表示向量?

数学实验1
高考¥资%源~网实验设计:
(1)实验目的:通过实验让学生探究:给定平面内的两个不平行向量,对于给定的非零向量是否能分解成方向上的两个向量,且分解是否是唯一的?
(2)实验步骤:
a.以四位同学为一组,给每一位同学一个图,上面有两个不平行向量和;

b.每个同学先独立作图;
c.小组对照,比较所分解的两向量的长度和方向是否相同.并得出结论.
(3)实验报告:(由学生发言)可以分解,且分解的长度和方向唯一的.
师:既然可以分解并且是唯一的,能不能用数学式子把和的关系表示出来?
生:是不平行向量,是平面内给定的向量,在平面内任取一点O
(1)作;
(2)过C作平行于直线OB的平行线与直线OA相交于点M;
(3)过C作平行于直线OA的平行线与直线OB相交于点N;
(4)四边形为平行四边形,由向量平行的充要条件可知存在实数,使得,,则.
对于给定的向量可以唯一分解成给定的两个不平行向量,那么对于任意的向量是否也可以得到同样的结论呢?下面让我们来做一个实验.
数学实验2
实验设计:
(1)实验目的:通过几何画板向量分解动画,让学生体会对于任意向量都可以分解成给定的两个不平行向量,且分解是唯一的.
(2)实验步骤:
a.利用几何画板画出两个不平行向量,画出一个任意向量(该向量可以任意拖动终点来改变);
b.学生从拖动中体会其向量的任意性.(一些特殊位置,,)
(3)实验报告:
3.探究结果
几何角度:平面内的任一向量都可以表示为给定的两个不平行向量的线性组合,即,且分解是唯一的.
代数角度:说明唯一性:
说明:(1)当时,
(2)当时,假设,则有
=
.由于不平行,故,即.
4.概括得出定理:
平面向量分解定理:如果是同一平面内的两个不平行向量,那么对于这一平面内的任意向量,有且只有一对实数,使.
我们把不平行的向量叫做这一平面内所有向量的一组基.
注意:
(1)基底不共线;
(2)将任一向量在给出基底、的条件下进行分解;
(3)基底给定时,分解形式唯一,是被,,唯一确定的数量

(通过实验的制作,学生的动手作图能力得到提高,通过学生对实验结果的讨论,学生的抽象概括能力,语言表达能力得到训练.)
(三).例题分析
例1(教材P66.例2)如图:平行四边形ABCD的两条对角线相交于点M,且,分别用表示和.
解:在平行四边形ABCD中,

注:(1)把作为一组基,用向量表示平面内的任何一个向量
(2)平行四边形法则简化为三角形法则。
练习:学生完成教材后面练习P67(2)
思考:由例1和练习(2)平行四边形ABCD中还有哪些线段可以作为一组基?哪些线段不可以作为一组基?为什么?
思考题(教材P67.例3)已知是不平行的两个向量,是实数,且,用表示.
解:
(四)、课堂小结:(1)平面向量的分解定理.对分解定理的理解:基底为两个不平行向量,向量的任意性,实数对的存在性和唯一性;
(2)从基的角度认识几何图形。
(五)、作业布置
《练习册》P37A组3,4,5B组2,3

精选阅读

平面向量的基本定理


一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是教师的任务之一。教案可以让学生们能够在上课时充分理解所教内容,帮助教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的教案内容吗?经过搜索和整理,小编为大家呈现“平面向量的基本定理”,仅供参考,欢迎大家阅读。

2.3.1平面向量基本定理

一、课题:平面向量基本定理
二、教学目标:1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的
关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
三、教学重、难点:1.平面向量的坐标运算;
2.对平面向量的坐标表示的理解。
四、教学过程:
(一)复习:
1.平面向量的基本定理:;
2.在平面直角坐标系中,每一个点都可用一对实数表示,那么,每一个向量可否也用
一对实数来表示?
(二)新课讲解:
1.向量的坐标表示的定义:
分别选取与轴、轴方向相同的单位向量,作为基底,对于任一向量,,(),实数对叫向量的坐标,记作.
其中叫向量在轴上的坐标,叫向量在轴上的坐标。
说明:(1)对于,有且仅有一对实数与之对应;
(2)相等的向量的坐标也相同;
(3),,;
(4)从原点引出的向量的坐标就是点的坐标。

例1如图,用基底,分别表示向量、、、,并求出它们的坐标。
解:由图知:;

2.平面向量的坐标运算:
问题:已知,,求,.
解:
即.
同理:.
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
3.向量的坐标计算公式:
已知向量,且点,,求的坐标.

归纳:(1)一个向量的坐标等于表示它的有向线段的终点坐标减去始点坐标;
(2)两个向量相等的充要条件是这二个向量的坐标相等。

4.实数与向量的积的坐标:
已知和实数,求
结论:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
例2已知,,求,,的坐标.
解:=;;

例3已知ABCD的三个顶点的坐标分别为、、,求顶点的坐标。
解:设顶点的坐标为.
∵,,
由,得.
∴∴∴顶点的坐标为.

例4(1)已知的方向与轴的正向所成的角为,且,则的坐标为,

(2)已知,,,且,求,.
解:(2)由题意,,
∴∴.

五、课堂小结:1.正确理解平面向量的坐标意义;
2.掌握平面向量的坐标运算;
3.能用平面向量的坐标及其运算解决一些实际问题。
六、作业:
补充:1.已知向量与相等,其中,,求;
2.已知向量,,,,且,求.

平面向量基本定理


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“平面向量基本定理”,希望能为您提供更多的参考。

课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量
在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。
2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

高二数学平面向量基本定理及坐标表示3


一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生们有一个良好的课堂环境,帮助高中教师营造一个良好的教学氛围。优秀有创意的高中教案要怎样写呢?经过搜索和整理,小编为大家呈现“高二数学平面向量基本定理及坐标表示3”,供大家借鉴和使用,希望大家分享!

2.3.4平面向量共线的坐标表示
教学目的:
(1)理解平面向量共线的坐标表示;
(2)掌握平面上两点间的中点坐标公式及定点坐标公式;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量公线的坐标表示及定点坐标公式,
教学难点:向量的坐标表示的理解及运算的准确性
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
2.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.
2.平面向量的坐标运算
(1)若,,
则,,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
(2)若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
3.练习:
1.若M(3,-2)N(-5,-1)且,求P点的坐标
2.若A(0,1),B(1,2),C(3,4),则2=.
3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),
如何求证:四边形ABCD是梯形.?
二、讲解新课:
1、思考:(1)两个向量共线的条件是什么?
(2)如何用坐标表示两个共线向量?
设=(x1,y1),=(x2,y2)其中.
由=λ得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0
∥()的充要条件是x1y2-x2y1=0
探究:(1)消去λ时能不能两式相除?
(不能∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为0)
(2)能不能写成?(不能。∵x1,x2有可能为0)
(3)向量共线有哪两种形式?∥()
三、讲解范例:
例1已知=(4,2),=(6,y),且∥,求y.
例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.
思考:你还有其它方法吗?
例3若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
例4已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4),=(2-1,7-5)=(1,2)
又∵2×2-4×1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6),=(2,4),2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
例5设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
思考:(1)中P1P:PP2=?(2)中P1P:PP2=?若P1P:PP2=如何求点P的坐标?
四、课堂练习:P101面4、5、6、7题。
五、小结:(1)平面向量共线的坐标表示;
(2)平面上两点间的中点坐标公式及定点坐标公式;
(3)向量共线的坐标表示.
六、课后作业:《习案》二十二。
思考:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=(C)
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B)?
A.-3B.-1C.1D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).与共线,则x、y的值可能分别为(B)
A.1,2B.2,2C.3,2D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y=3.
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=5

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算


2.3.22.3.3平面向量的正交分解及坐标表示
平面向量的坐标运算

预习课本P94~98,思考并完成以下问题
(1)怎样分解一个向量才为正交分解?
(2)如何由a,b的坐标求a+b,a-b,λa的坐标?
[新知初探]
1.平面向量正交分解的定义
把一个平面向量分解为两个互相垂直的向量.
2.平面向量的坐标表示
(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.
(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.
(3)坐标表示:a=(x,y).
(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.
(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=bx1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).
3.平面向量的坐标运算
设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:
文字描述符号表示
加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)
减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=(x1-x2,y1-y2)
数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=(λx1,λy1)
重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A(x1,y1),
B(x2,y2),则=(x2-x1,y2-y1)
[点睛](1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.
(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)相等向量的坐标相同与向量的起点、终点无关.()
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()
(3)两向量差的坐标与两向量的顺序无关.()
(4)点的坐标与向量的坐标相同.()
答案:(1)√(2)√(3)×(4)×
2.若a=(2,1),b=(1,0),则3a+2b的坐标是()
A.(5,3)B.(4,3)
C.(8,3)D.(0,-1)
答案:C
3.若向量=(1,2),=(3,4),则=()
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)
答案:A
4.若点M(3,5),点N(2,1),用坐标表示向量=______.
答案:(-1,-4)

平面向量的坐标表示

[典例]
如图,在边长为1的正方形ABCD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.
[解]由题知B,D分别是30°,120°角的终边与单位圆的交点.
设B(x1,y1),D(x2,y2).
由三角函数的定义,得
x1=cos30°=32,y1=sin30°=12,∴B32,12.
x2=cos120°=-12,y2=sin120°=32,
∴D-12,32.
∴=32,12,=-12,32.

求点和向量坐标的常用方法
(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.
(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.

[活学活用]
已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,
(1)求向量的坐标;
(2)若B(3,-1),求的坐标.
解:(1)设点A(x,y),则x=43cos60°=23,
y=43sin60°=6,即A(23,6),=(23,6).
(2)=(23,6)-(3,-1)=(3,7).
平面向量的坐标运算
[典例](1)已知三点A(2,-1),B(3,4),C(-2,0),则向量3+2=________,-2=________.
(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.
[解析](1)∵A(2,-1),B(3,4),C(-2,0),
∴=(1,5),=(4,-1),=(-5,-4).
∴3+2=3(1,5)+2(4,-1)
=(3+8,15-2)
=(11,13).
-2=(-5,-4)-2(1,5)
=(-5-2,-4-10)
=(-7,-14).
[答案](11,13)(-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3),
a-b=(-1,2)-(3,-5)=(-4,7),
3a=3(-1,2)=(-3,6),
2a+3b=2(-1,2)+3(3,-5)
=(-2,4)+(9,-15)
=(7,-11).
平面向量坐标运算的技巧
(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.
(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.
(3)向量的线性坐标运算可完全类比数的运算进行.

[活学活用]
1.设平面向量a=(3,5),b=(-2,1),则a-2b=()
A.(7,3)B.(7,7)
C.(1,7)D.(1,3)
解析:选A∵2b=2(-2,1)=(-4,2),
∴a-2b=(3,5)-(-4,2)=(7,3).
2.已知M(3,-2),N(-5,-1),=12,则P点坐标为______.
解析:设P(x,y),=(x-3,y+2),=(-8,1),
∴=12=12(-8,1)=-4,12,
∴x-3=-4,y+2=12.∴x=-1,y=-32.
答案:-1,-32

向量坐标运算的综合应用
[典例]已知点O(0,0),A(1,2),B(4,5)及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?
[解]因为=+t=(1,2)+t(3,3)=(1+3t,2+3t),
若点P在x轴上,则2+3t=0,
所以t=-23.
若点P在y轴上,则1+3t=0,
所以t=-13.
若点P在第二象限,则1+3t<0,2+3t>0,
所以-23<t<-13.
[一题多变]
1.[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.
解:由典例知P(1+3t,2+3t),
则1+1+3t2=4,2+2+3t2=5,解得t=2.
2.[变设问]本例条件不变,试问四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.
解:=(1,2),=(3-3t,3-3t).若四边形OABP为平行四边形,则=,
所以3-3t=1,3-3t=2,该方程组无解.
故四边形OABP不能成为平行四边形.
向量中含参数问题的求解
(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.
(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.
层级一学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为()
A.2i+3jB.4i+2j
C.2i-jD.-2i+j
解析:选C记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A12,4,B14,2,又λ=12,则λa等于()
A.-18,-1B.14,3
C.18,1D.-14,-3
解析:选A∵a==14,2-12,4=-14,-2,
∴λa=12a=-18,-1.
3.已知向量a=(1,2),2a+b=(3,2),则b=()
A.(1,-2)B.(1,2)
C.(5,6)D.(2,0)
解析:选Ab=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=()
A.(2,4)B.(3,5)
C.(1,1)D.(-1,-1)
解析:选C=-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为()
A.(-14,16)B.(22,-11)
C.(6,1)D.(2,4)
解析:选D设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得10-x=4+2x,-2-y=-14+2y,所以x=2,y=4.
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴2m+n=9,m-2n=-8,∴m=2,n=5,∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos150°=6cos150°=-33,
y=||sin150°=6sin150°=3,
即A(-33,3),所以=(-33,3).
答案:(-33,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴1-x=-7,0-y=10x=8,y=-10,
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以x1+1=4,y1+2=3,所以x1=3,y1=1,
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2=3-42=-12,y2=1-32=-1,
所以M-12,-1.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以1=-7λ,1-y=-4λ,所以λ=-17,y=37.

层级二应试能力达标
1.已知向量=(2,4),=(0,2),则12=()
A.(-2,-2)B.(2,2)
C.(1,1)D.(-1,-1)
解析:选D12=12(-)=12(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为()
A.-2,1B.1,-2
C.2,-1D.-1,2
解析:选D∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为()
A.2,72B.2,-12
C.(3,2)D.(1,3)
解析:选A设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D2,72,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“?”为m?n=(ac-bd,bc+ad),运算“?”为m?n=(a+c,b+d).设f=(p,q),若(1,2)?f=(5,0),则(1,2)?f等于()
A.(4,0)B.(2,0)
C.(0,2)D.(0,-4)
解析:选B由(1,2)f=(5,0),得p-2q=5,2p+q=0,解得p=1,q=-2,所以f=(1,-2),所以(1,2)?f=(1,2)?(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=22,且∠AOC=π4.设=λ+(λ∈R),则λ=________.
解析:过C作CE⊥x轴于点E,
由∠AOC=π4知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=23.
答案:23
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=12(+)=12(-4-3,-3-5)
=12(-7,-8)=-72,-4.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-12=-12-72,-4=74,2.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以6-3x=0,6-3y=0,解得x=2,y=2.
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以x0=m+2n,y0=2m+n,
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.

文章来源:http://m.jab88.com/j/45372.html

更多

最新更新

更多