88教案网

平面向量基本定理

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“平面向量基本定理”,希望能为您提供更多的参考。

课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量
在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。
2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

相关知识

课时5平面向量基本定理


课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量

在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。

2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

平面向量的基本定理及坐标表示


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要精心准备好合适的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。那么,你知道高中教案要怎么写呢?下面是小编精心收集整理,为您带来的《平面向量的基本定理及坐标表示》,希望能对您有所帮助,请收藏。

平面向量的基本定理及坐标表示
第4课时
§2.3.1平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ0时λ与方向相同;λ0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+)=λ+λ
3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1已知向量,求作向量2.5+3.
例2如图ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t(tR)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5已知a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:
1.设e1、e2是同一平面内的两个向量,则有()
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+ue2(λ、u∈R)
2.已知矢量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系
A.不共线B.共线C.相等D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()
A.3B.-3C.0D.2
4.已知a、b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=.
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a=λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、课后记:

第二章2.32.3.1平面向量基本定理讲义


2.3.1平面向量基本定理
预习课本P93~94,思考并完成以下问题
(1)平面向量基本定理的内容是什么?
(2)如何定义平面向量基底?
(3)两向量夹角的定义是什么?如何定义向量的垂直?

[新知初探]
1.平面向量基本定理
条件e1,e2是同一平面内的两个不共线向量
结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2
基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底
[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.
2.向量的夹角
条件两个非零向量a和b
产生过程
作向量=a,=b,则∠AOB叫做向量a与b的夹角

范围0°≤θ≤180°
特殊情况θ=0°a与b同向
θ=90°a与b垂直,记作a⊥b
θ=180°a与b反向

[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)任意两个向量都可以作为基底.()
(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底.()
(3)零向量不可以作为基底中的向量.()
答案:(1)×(2)√(3)√
2.若向量a,b的夹角为30°,则向量-a,-b的夹角为()
A.60°B.30°
C.120°D.150°
答案:B
3.设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()
A.e1,e2B.e1+e2,3e1+3e2
C.e1,5e2D.e1,e1+e2
答案:B
4.在等腰Rt△ABC中,∠A=90°,则向量,的夹角为______.
答案:135°

用基底表示向量

[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,.
[解]法一:由题意知,==12=12a,==12=12b.
所以=+=-=12a-12b,
=+=12a+12b,
法二:设=x,=y,则==y,
又+=,-=,则x+y=a,y-x=b,
所以x=12a-12b,y=12a+12b,
即=12a-12b,=12a+12b.
用基底表示向量的方法
将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.
[活学活用]
如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b.试以a,b为基底表示,,.
解:∵AD∥BC,且AD=13BC,
∴=13=13b.
∵E为AD的中点,
∴==12=16b.
∵=12,∴=12b,
∴=++
=-16b-a+12b=13b-a,
=+=-16b+13b-a=16b-a,
=+=-(+)
=-(+)=-16b-a+12b
=a-23b.

向量夹角的简单求解
[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b与a的夹角又是多少?
[解]如图所示,作=a,=b,且∠AOB=60°.
以,为邻边作平行四边形OACB,则=a+b,=a-b.
因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB=60°,所以与的夹角为30°,与的夹角为60°.
即a+b与a的夹角是30°,a-b与a的夹角是60°.

求两个向量夹角的方法
求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图形的知识求解向量的夹角.过程简记为“一作二证三算”.

[活学活用]
如图,已知△ABC是等边三角形.
(1)求向量与向量的夹角;
(2)若E为BC的中点,求向量与的夹角.
解:(1)∵△ABC为等边三角形,
∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,则=,
∴∠DBC为向量与的夹角.
∵∠DBC=120°,
∴向量与的夹角为120°.
(2)∵E为BC的中点,∴AE⊥BC,
∴与的夹角为90°.
平面向量基本定理的应用
[典例]如图,在△ABC中,点M是BC的中点,点N在AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM与BP∶PN.
[解]设=e1,=e2,
则=+=-3e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-3λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(3λ+μ)e2.
而=+=2e1+3e2,由平面向量基本定理,
得λ+2μ=2,3λ+μ=3,解得λ=45,μ=35.
∴=45,=35,
∴AP∶PM=4∶1,BP∶PN=3∶2.
[一题多变]
1.[变设问]在本例条件下,若=a,=b,试用a,b表示,
解:由本例解析知BP∶PN=3∶2,则=25,
=+=+25=b+25(-)
=b+45a-25b=35b+45a.
2.[变条件]若本例中的点N为AC的中点,其它条件不变,求AP∶PM与BP∶PN.
解:如图,设=e1,=e2,
则=+=-2e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-2λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(2λ+μ)e2.
而=+=2e1+2e2,由平面向量基本定理,
得λ+2μ=2,2λ+μ=2,解得λ=23,μ=23.
∴=23,=23,
∴AP∶PM=2,BP∶PN=2.
若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.

层级一学业水平达标
1.已知?ABCD中∠DAB=30°,则与的夹角为()
A.30°B.60°
C.120°D.150°
解析:选D如图,与的夹角为∠ABC=150°.
2.设点O是?ABCD两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是()
①与;②与;③与;④与.
A.①②B.①③
C.①④D.③④
解析:选B寻找不共线的向量组即可,在?ABCD中,与不共线,与不共线;而∥,∥,故①③可作为基底.
3.若AD是△ABC的中线,已知=a,=b,则以a,b为基底表示=()
A.12(a-b)B.12(a+b)
C.12(b-a)D.12b+a
解析:选B如图,AD是△ABC的中线,则D为线段BC的中点,从而=,即-=-,从而=12(+)=12(a+b).
4.在矩形ABCD中,O是对角线的交点,若=e1,=e2,则=()
A.12(e1+e2)B.12(e1-e2)
C.12(2e2-e1)D.12(e2-e1)
解析:选A因为O是矩形ABCD对角线的交点,=e1,=e2,所以=12(+)=12(e1+e2),故选A.
5.(全国Ⅰ卷)设D为△ABC所在平面内一点,=3,则()
A.=-13+43
B.=13-43
C.=43+13
D.=43-13
解析:选A由题意得=+=+13=+13-13=-13+43.
6.已知向量a,b是一组基底,实数x,y满足(3x-4y)a+(2x-3y)b=6a+3b,则x-y的值为______.
解析:∵a,b是一组基底,∴a与b不共线,
∵(3x-4y)a+(2x-3y)b=6a+3b,
∴3x-4y=6,2x-3y=3,解得x=6,y=3,∴x-y=3.
答案:3
7.已知e1,e2是两个不共线向量,a=k2e1+1-5k2e2与b=2e1+3e2共线,则实数k=______.
解析:由题设,知k22=1-5k23,∴3k2+5k-2=0,
解得k=-2或13.
答案:-2或13
8.如下图,在正方形ABCD中,设=a,=b,=c,则在以a,b为基底时,可表示为______,在以a,c为基底时,可表示为______.
解析:以a,c为基底时,将平移,使B与A重合,再由三角形法则或平行四边形法则即得.
答案:a+b2a+c
9.如图所示,设M,N,P是△ABC三边上的点,且=13,=13,=13,若=a,=b,试用a,b将,,表示出来.
解:=-
=13-23=13a-23b,
=-=-13-23=-13b-23(a-b)=-23a+13b,
=-=-(+)=13(a+b).
10.证明:三角形的三条中线共点.
证明:如图所示,设AD,BE,CF分别为△ABC的三条中线,令=a,=b.则有=b-a.
设G在AD上,且AGAD=23,则有=+=a+12(b-a)=12(a+b).
=-=12b-a.
∴=-=23-
=13(a+b)-a=13b-23a
=2312b-a=23.
∴G在BE上,同理可证=23,即G在CF上.
故AD,BE,CF三线交于同一点.
层级二应试能力达标
1.在△ABC中,点D在BC边上,且=2,设=a,=b,则可用基底a,b表示为()
A.12(a+b)B.23a+13b
C.13a+23bD.13(a+b)
解析:选C∵=2,∴=23.
∴=+=+23=+23(-)=13+23=13a+23b.
2.AD与BE分别为△ABC的边BC,AC上的中线,且=a,=b,则=()
A.43a+23bB.23a+43b
C.23a-23bD.-23a+23b
解析:选B设AD与BE交点为F,则=13a,=23b.所以=+=23b+13a,所以=2=23a+43b.
3.如果e1,e2是平面α内所有向量的一组基底,那么,下列命题中正确的是()
A.若存在实数λ1,λ2,使得λ1e1+λ2e1=0,则λ1=λ2=0
B.平面α内任一向量a都可以表示为a=λ1e1+λ2e2,其中λ1,λ2∈R
C.λ1e1+λ2e2不一定在平面α内,λ1,λ2∈R
D.对于平面α内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
解析:选BA中,(λ1+λ2)e1=0,∴λ1+λ2=0,即λ1=-λ2;B符合平面向量基本定理;C中,λ1e1+λ2e2一定在平面α内;D中,λ1,λ2有且只有一对.
4.已知非零向量,不共线,且2=x+y,若=λ(λ∈R),则x,y满足的关系是()
A.x+y-2=0B.2x+y-1=0
C.x+2y-2=0D.2x+y-2=0
解析:选A由=λ,得-=λ(-),
即=(1+λ)-λ.又2=x+y,
∴x=2+2λ,y=-2λ,消去λ得x+y=2.
5.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a+________b.
解析:由a=e1+2e2,b=-e1+e2,解得e1=13a-23b,e2=13a+13b.
故e1+e2=13a-23b+13a+13b
=23a+-13b.
答案:23-13
6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.
解析:由题意可画出图形,
在△OAB中,
因为∠OAB=60°,|b|=2|a|,
所以∠ABO=30°,OA⊥OB,
即向量a与c的夹角为90°.
答案:90°
7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.
(1)证明:a,b可以作为一组基底;
(2)以a,b为基底,求向量c=3e1-e2的分解式;
(3)若4e1-3e2=λa+μb,求λ,μ的值.
解:(1)证明:若a,b共线,则存在λ∈R,使a=λb,
则e1-2e2=λ(e1+3e2).
由e1,e2不共线,得λ=1,3λ=-2λ=1,λ=-23.
∴λ不存在,故a与b不共线,可以作为一组基底.
(2)设c=ma+nb(m,n∈R),则
3e1-e2=m(e1-2e2)+n(e1+3e2)
=(m+n)e1+(-2m+3n)e2.
∴m+n=3,-2m+3n=-1m=2,n=1.∴c=2a+b.
(3)由4e1-3e2=λa+μb,得
4e1-3e2=λ(e1-2e2)+μ(e1+3e2)
=(λ+μ)e1+(-2λ+3μ)e2.
∴λ+μ=4,-2λ+3μ=-3λ=3,μ=1.
故所求λ,μ的值分别为3和1.
8.若点M是△ABC所在平面内一点,且满足:=34+14.
(1)求△ABM与△ABC的面积之比.
(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.
解:(1)如图,由=34+14可知M,B,C三点共线,
令=λ=+=+λ=+λ(-)=(1-λ)+λλ=14,所以S△ABMS△ABC=14,即面积之比为1∶4.
(2)由=x+y=x+y2,=x4+y,由O,M,A三点共线及O,N,C三点共线x+y2=1,x4+y=1x=47,y=67.

第5课时2.3.1平面向量基本定理教案


第5课时§2.3.1平面向量基本定理
【教学目标】
一、知识与技能
1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
二、过程与方法
在实际问题中经历和感受平面内任何一个向量都可以由不共线的另外两向量来表示。
三、情感、态度与价值观
通过平面向量基本定理内容的推导让学生不断了解数学,走进数学,增强学生的数学素养。
【教学重点难点】基本定理的得出与证明、基本定理的简单应用、
一、创设情景:
问题1、ABCD的对角线AC和BD交于点M,,
试用向量,表示。

结论:由作图可得
问题2、对于向量,是否是惟一的一组?
二、讲解新课:
平面向量基本定理:如果是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数,使
注:①,均非零向量;
②,不唯一(事先给定);
③,唯一;
④时,与共线;时,与共线;时,
基底:
正交分解:
三、例题分析:
例1、已知向量,(如图),求作向量.

例2、如图,、不共线,,用、表示.

例3、已知梯形中,,,分别是、的中点,若,,用,表示、、.

例4、已知在四边形中,,,,
求证:是梯形。
例5、设是两个不共线的非零向量,记,,那么当实数t为何值时,A,B,C三点共线

五、课时小结:
1.熟练掌握平面向量基本定理;
2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表示。

文章来源:http://m.jab88.com/j/37913.html

更多

最新更新

更多