平面向量坐标表示
年级高一学科数学课题平面向量坐标表示
授课时间撰写人
学习重点平面向量的坐标运算.
学习难点对平面向量坐标运算的理解
学习目标
1.会用坐标表示平面向量的加减与数乘运算;
2.能用两端点的坐标,求所构造向量的坐标;
教学过程
一自主学习
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设=(x1,y1)=(x2,y2)则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?
+=
-=
λ=
思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?
+=();-=();
λ=().
两个向量和与差的坐标运算法则:
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考3:已知点A(x1,y1),B(x2,y2),那么向量的坐标如何?
二师生互动
例1已知,,求和.
例2已知平行四边形的顶点,,,试求顶点的坐标.
变式:若与的交点为,试求点的坐标.
练1.已知向量的坐标,求,的坐标.
⑴
⑵
⑶
⑷
练2.已知、两点的坐标,求,的坐标.
⑴
⑵
⑶
⑷
三巩固练习
1.若向量与向量相等,则()
A.B.
C.D.
2.已知,点的坐标为,则的坐标为()
A.B.
C.D.
3.已知,,则等于()
A.B.C.D.
4.设点,,且
,则点的坐标为.
5.作用于原点的两力,,为使它们平衡,则需加力.
6.已知A(-1,5)和向量=(2,3),若=3,则点B的坐标为__________。
A.(7,4)B.(5,4)C.(7,14)D.(5,14)
7.已知点,及,,,求点、、的坐标。
四课后反思
五课后巩固练习
1.若点、、,且,,则点的坐标为多少?点的坐标为多少?向量的坐标为多少?
2.已知向量,,,试用来表示.
作为杰出的教学工作者,能够保证教课的顺利开展,作为教师准备好教案是必不可少的一步。教案可以让讲的知识能够轻松被学生吸收,使教师有一个简单易懂的教学思路。那么如何写好我们的教案呢?下面是小编为大家整理的“平面向量的坐标运算”,相信能对大家有所帮助。
2.3.2平面向量的坐标运算
一、课题:2.3.2平面向量的坐标运算
二、教学目标:1.掌握两向量平行时坐标表示的充要条件;
2.能利用两向量平行的坐标表示解决有关综合问题。
三、教学重、难点:1.向量平行的充要条件的坐标表示;
2.应用向量平行的充要条件证明三点共线和两直线平行的问题。
四、教学过程:
(一)复习:
1.已知,,求,的坐标;
2.已知点,及,,,求点、、的
坐标。
归纳:(1)设点,,则;
(2),,则,
,;
3.向量与非零向量平行的充要条件是:.
(二)新课讲解:
1.向量平行的坐标表示:
设,,(),且,
则,∴.
∴,∴.
归纳:向量平行(共线)的充要条件的两种表达形式:
①;
②且设,()
例1已知,,且,求.
解:∵,∴.∴.
例2已知,,,求证、、三点共线.
证明:,,
又,∴.∵直线、直线有公共点,
∴,,三点共线。
例3已知,,若与平行,求.
解:=
∴,∴,∴.
例4已知,,,,则以,为基底,求.
解:令,则.
,∴,
∴,∴.
例5已知点,,,,向量与平行吗?直线平
行与直线吗?
解:∵,=,
又,∴;
又,,,
∴与不平行,
∴、、不共线,与不重合,
所以,直线与平行。
五、小结:1.熟悉平面向量共线充要条件的两种表达形式;
2.会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行;
3.明白判断两直线平行与两向量平行的异同。
六、作业:
补充:1.已知,,,且,,求点,的坐标及向量的坐标;
2.已知,,,试用,表示;
3.设,
平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.
2.平面向量的坐标运算
若,,
则,,.
若,,则
二、讲解新课:
∥()的充要条件是x1y2-x2y1=0
设=(x1,y1),=(x2,y2)其中.
由=λ得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0
探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为0
(2)充要条件不能写成∵x1,x2有可能为0
(3)从而向量共线的充要条件有两种形式:∥()
三、讲解范例:
例1已知=(4,2),=(6,y),且∥,求y.
例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.
例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
例4若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB与平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4),=(2-1,7-5)=(1,2)
又∵2×2-4×1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6),=(2,4),2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
四、课堂练习:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()?
A.-3B.-1C.1D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).与共线,则x、y的值可能分别为()
A.1,2B.2,2C.3,2D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y=.
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:
总课题向量的坐标表示总课时第23课时
分课题平面向量的坐标运算分课时第2课时
教学目标掌握平面向量的坐标表示及坐标运算
重点难点掌握平面向量的坐标表示及坐标运算;平面向量坐标表示的理解
引入新课
1、在直角坐标平面内一点是如何表示的?。
2、以原点为起点,为终点,能不能也用坐标来表示呢?例:
3、平面向量的坐标表示。
4、平面向量的坐标运算。
已知、、实数,那么
;;。
例题剖析
例1、如图,已知是坐标原点,点在第一象限,,,求向量的坐标。
例2、如图,已知,,,,求向量,,,的坐标。
例3、用向量的坐标运算解:如图,质量为的物体静止的放在斜面上,斜面与水平面的夹角为,求斜面对物体的摩擦力。
例4、已知,,是直线上一点,且,求点的坐标。
巩固练习
1、与向量平行的单位向量为()
、、、或、
2、已知是坐标原点,点在第二象限,,,求向量的坐标。
3、已知四边形的顶点分别为,,,,求向量,的坐标,并证明四边形是平行四边形。
4、已知作用在原点的三个力,,,求它们的合力的坐标。
5、已知是坐标原点,,,且,求的坐标。
课堂小结
平面向量的坐标表示;平面向量的坐标运算。
课后训练
班级:高一()班姓名__________
一、基础题
1、若向量,,则,的坐标分别为()
、,、,、,、,
2、已知,终点坐标是,则起点坐标是。
3、已知,,向量与相等.则。
4、已知点,,,则。
5、已知的终点在以,为端点的线段上,则的最大值和最小值分别等于。
6、已知平行四边形的三个顶点坐标分别为,,,求第四个顶点的坐标。
7、已知向量,,点为坐标原点,若向量,,求向量的坐标。
8、已知点,及,,求点,和的坐标。
三、能力题
9、已知点,,,若点满足,
当为何值时:(1)点在直线上?(2)点在第四象限内?
文章来源:http://m.jab88.com/j/44788.html
更多