一名优秀的教师就要对每一课堂负责,教师要准备好教案,这是老师职责的一部分。教案可以让上课时的教学氛围非常活跃,减轻教师们在教学时的教学压力。那么一篇好的教案要怎么才能写好呢?考虑到您的需要,小编特地编辑了“平面向量的坐标”,仅供参考,大家一起来看看吧。
平面向量的坐标
一、教学目标:
1.知识与技能
(1)掌握平面向量正交分解及其坐标表示.
(2)会用坐标表示平面向量的加、减及数乘运算.
(3)理解用坐标表示的平面向量共线的条件.
2.过程与方法
教材利用正交分解引出向量的坐标,在此基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,培养学生应用能力.
3.情感态度价值观
通过本节内容的学习,使同学们对认识到在全体有序实数对与坐标平面内的所有向量之间可以建立一一对应关系(即点或向量都可以看作有序实数对的直观形象);让学生领悟到数形结合的思想;培养学生勇于创新的精神.
二.教学重、难点
重点:平面向量线性运算的坐标表示及向量平行的坐标表示.
难点:平面向量线性运算的坐标表示及向量平行的坐标表示.
三.学法与教学用具
学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
教学用具:电脑、投影机.
四.教学设想
【创设情境】
(回忆)平面向量的基本定理(基底)=λ1+λ2
其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.
【探究新知】
(一)、平面向量的坐标表示
1.在坐标系下,平面上任何一点都可用一对实数(坐标)来表示
思考:在坐标系下,向量是否可以用坐标来表示呢?
取轴、轴上两个单位向量,作基底,则平面内作一向量
记作:=(x,y)称作向量的坐标
如:===(2,2)===(2,1)
===(1,5)=(1,0)=(0,1)=(0,0)
由以上例子让学生讨论:
①向量的坐标与什么点的坐标有关?
②每一平面向量的坐标表示是否唯一的?
③两个向量相等的条件是?(两个向量坐标相等)
[展示投影]思考与交流:
直接由学生讨论回答:
思考1.(1)已知(x1,y1)(x2,y2)求+,的坐标
(2)已知(x,y)和实数λ,求λ的坐标
解:+=(x1+y1)+(x2+y2)=(x1+x2)+(y1+y2)
即:+=(x1+x2,y1+y2)
同理:=(x1x2,y1y2)
λ=λ(x+y)=λx+λy
∴λ=(λx,λy)
结论:①.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
②.实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
思考2.已知你觉得的坐标与A、B点的坐标有什么关系?
∵==(x2,y2)(x1,y1)
=(x2x1,y2y1)
结论:③.一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充)
例1.已知三个力(3,4),(2,5),(x,y)的合力++=
求的坐标.
解:由题设++=得:(3,4)+(2,5)+(x,y)=(0,0)
即:∴∴(5,1)
例4.已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点。
解:当平行四边形为ABCD时,
仿例2得:D1=(2,2)
当平行四边形为ACDB时,
仿例2得:D2=(4,6)
当平行四边形为DACB时,
仿例2得:D3=(6,0)
【巩固深化,发展思维】
1.若M(3,-2)N(-5,-1)且,求P点的坐标;
解:设P(x,y)则(x-3,y+2)=(-8,1)=(-4,)
∴∴P点坐标为(-1,-)
2.若A(0,1),B(1,2),C(3,4)则2=(-3,-3)
3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3)求证:四边形ABCD是梯形。
解:∵=(-2,3)=(-4,6)∴=2
∴∥且||||∴四边形ABCD是梯形
【探究新知】
[展示投影]思考与交流:
思考:共线向量的条件是有且只有一个实数λ使得=λ,那么这个条件如何用坐标来表示呢?
设其中
由得
消去λ:∵∴中至少有一个不为0
结论:∥()用坐标表示为
注意:
①消去λ时不能两式相除∵y1,y2有可能为0.
②这个条件不能写成∵有可能为0.
③向量共线的两种判定方法:∥()
[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充)
例5.如果向量
向量,试确定实数m的值使A、B、C三点共线
解法1.利用可得于是得
解法2.易得
故当时,三点共线
例6.若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
[学习小结](学生总结,其它学生补充)
【巩固深化,发展思维】
1.教材P89练习2--4
2.已知
3.已知点A(0,1)B(1,0)C(1,2)D(2,1)求证:AB∥CD
4.证明下列各组点共线:①A(1,2),B(-3,4),C(2,3.5)
②P(-1,2),Q(0.5,0),R(5,-6)
5.已知向量=(-1,3)=(x,-1)且∥求x.
[学习小结](学生总结,其它学生补充)
①向量加法运算的坐标表示.
②向量减法运算的坐标表示.
③实数与向量的积的坐标表示.
④向量共线的条件.
五、评价设计
1.作业:习题2--4A组第1,2,3,7,8题.
2.(备选题):已知A(-1,-1)B(1,3)C(1,5)D(2,7)向量与平行吗?直线AB与平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4)=(2-1,7-5)=(1,2)
又∵2×2-4-1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6)=(2,4)
2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
六、课后反思:
平面向量坐标表示
年级高一学科数学课题平面向量坐标表示
授课时间撰写人
学习重点平面向量的坐标运算.
学习难点对平面向量坐标运算的理解
学习目标
1.会用坐标表示平面向量的加减与数乘运算;
2.能用两端点的坐标,求所构造向量的坐标;
教学过程
一自主学习
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设=(x1,y1)=(x2,y2)则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?
+=
-=
λ=
思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?
+=();-=();
λ=().
两个向量和与差的坐标运算法则:
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考3:已知点A(x1,y1),B(x2,y2),那么向量的坐标如何?
二师生互动
例1已知,,求和.
例2已知平行四边形的顶点,,,试求顶点的坐标.
变式:若与的交点为,试求点的坐标.
练1.已知向量的坐标,求,的坐标.
⑴
⑵
⑶
⑷
练2.已知、两点的坐标,求,的坐标.
⑴
⑵
⑶
⑷
三巩固练习
1.若向量与向量相等,则()
A.B.
C.D.
2.已知,点的坐标为,则的坐标为()
A.B.
C.D.
3.已知,,则等于()
A.B.C.D.
4.设点,,且
,则点的坐标为.
5.作用于原点的两力,,为使它们平衡,则需加力.
6.已知A(-1,5)和向量=(2,3),若=3,则点B的坐标为__________。
A.(7,4)B.(5,4)C.(7,14)D.(5,14)
7.已知点,及,,,求点、、的坐标。
四课后反思
五课后巩固练习
1.若点、、,且,,则点的坐标为多少?点的坐标为多少?向量的坐标为多少?
2.已知向量,,,试用来表示.
平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.
2.平面向量的坐标运算
若,,
则,,.
若,,则
二、讲解新课:
∥()的充要条件是x1y2-x2y1=0
设=(x1,y1),=(x2,y2)其中.
由=λ得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0
探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为0
(2)充要条件不能写成∵x1,x2有可能为0
(3)从而向量共线的充要条件有两种形式:∥()
三、讲解范例:
例1已知=(4,2),=(6,y),且∥,求y.
例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.
例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
例4若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB与平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4),=(2-1,7-5)=(1,2)
又∵2×2-4×1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6),=(2,4),2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
四、课堂练习:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()?
A.-3B.-1C.1D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).与共线,则x、y的值可能分别为()
A.1,2B.2,2C.3,2D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y=.
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:
作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“平面向量的正交分解和坐标表示及运算”供您参考,希望能够帮助到大家。
平面向量的正交分解和坐标表示及运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
…………○1
我们把叫做向量的(直角)坐标,记作
…………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,,,.
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1)若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为、,则
即,同理可得
(2)若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
==(x2,y2)(x1,y1)=(x2x1,y2y1)
(3)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
三、讲解范例:
例1已知A(x1,y1),B(x2,y2),求的坐标.
例2已知=(2,1),=(-3,4),求+,-,3+4的坐标.
例3已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由得D1=(2,2)
当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)
例4已知三个力(3,4),(2,5),(x,y)的合力++=,求的坐标.
解:由题设++=得:(3,4)+(2,5)+(x,y)=(0,0)
即:∴∴(5,1)
四、课堂练习:
1.若M(3,-2)N(-5,-1)且,求P点的坐标
2.若A(0,1),B(1,2),C(3,4),则2=.
3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:
文章来源:http://m.jab88.com/j/21196.html
更多