88教案网

§1.3.3函数的最大(小)值与导数(1课时)

一名合格的教师要充分考虑学习的趣味性,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?急您所急,小编为朋友们了收集和编辑了“§1.3.3函数的最大(小)值与导数(1课时)”,供大家参考,希望能帮助到有需要的朋友。

§1.3.3函数的最大(小)值与导数(1课时)
【学情分析】:
这部分是在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法,然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法,最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法
【教学目标】:
(1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念
(2)使学生掌握用导数求函数最值的方法和步骤
【教学重点】:
利用导数求函数的最大值和最小值的方法.
【教学难点】:
函数的最大值、最小值与函数的极大值和极小值的区别与联系.熟练计算函数最值的步骤
【教学过程设计】:
教学环节教学活动设计意图
复习引入设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极大值f(x0),x0是极大值点,则对x0附近的所有的点,都有f(x)____f(x0)
设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极小值f(x0),x0是极小值点,则对x0附近的所有的点,都有f(x)____f(x0)知识的巩固
概念对比回顾以前所学关于最值的概念,形成对比认识:
函数最大值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值
函数最小值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值

思考:你觉得极值与最值的区别在哪里?让学生发现极值与最值的概念区别,
概念辨析练习(1)函数的极大(小)值一定是函数的最大(小)值,极大(小)值点就是最大(小)值点
(2)函数的最大(小)值一定是函数的极大(小)值,最大(小)值点就是极大(小)值点
(3)函数y=f(x)在x=a处取得极值是函数y=f(x)在x=a处
取得最值的____________(充要性)通过练习深化他们对函数取极值与最值的区别
对极值与最值概念的深化理解(1)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
(2)函数的最值是描述函数在整个定义域上的整体性质,函数的极值是描述函数在某个局部的性质
(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个点评提高
闭区间上的函数最值问题(1)在闭区间上函数最值的存在性:
通过观察一系列函数在闭区间上的函数图像,并指出函数的最值及相应的最值点:
a.函数y=-x+2在区间[-3,2]的图像
b.函数在区间[1/2,3]的图像
c.函数在区间[-3,0]的图像
d.函数图像如下:
一般性总结:
在闭区间上连续的函数在上必有最大值与最小值.
(连续函数的闭区间定理——数学分析)

(2)在闭区间上函数最值点的分析:
既然在闭区间上连续的函数在上必有最值,那么最值点会是哪些点呢?
通过上述图像的观察,可以发现最值点可能是闭区间的端点,函数的极值点
有无其他可能?
没有——反证法可说明本节的主要内容及主要结论,也是求函数最值的理论根据和方法指引
需要注意的地方判断正误:
(1)在开区间内连续的函数一定有最大值与最小值
(2)函数在闭区间上一定有最大值与最小值
(3)函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
说明:
开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值(1)F;(2)F;(3)T
例题精讲求闭区间上的连续函数的最值
对于教材例5的处理方式:
此题课本直接求出了极值和相应的极值点,个人认为还是让学生经历一个求极值的过程:
先要求学生求函数在区间上的极值及极值点
再提问学生是否可以马上下结论:最值是多少?
务必让学生牢记:求函数的最值不光要求极值,还要计算函数在闭区间端点处的函数值

整个例题的使用务必让学生体会求函数最值的方法与步骤

求闭区间上的连续函数的最值,务必勤加练习,方能熟练掌握其方法,思维方法周密、不缺漏

除教材提供的练习外还可以补充以下练习:
在[0,3]上的最大值和最小值
在上的最大值和最小值
在上的最大值和最小值
在[0,4]上的最大值和最小值
上的最大值和最小值

求闭区间上连续函数最值的方法与步骤总结设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:
⑴求在内的极值;
⑵将的各极值与、比较得出函数在上的最值

课后练习:
1、函数在区间上的最大值和最小值分别为()
A5,-15B5,-4C-4,-15D5,-16
答案D
2、函数在区间上的最小值为()
ABCD
答案D

3、函数的最大值为()
ABCD
答案A令,当时,;当时,,,在定义域内只有一个极值,所以
4、函数在上的最大值是__________最小值是__________
答案

5、函数在区间上的最大值是
答案,比较处的函数值,得

6、求函数
(1)求函数的单调递减区间
(2)函数在区间上的最大值是20,求它在该区间上的最小值
答案:
,为减区间
为增区间
所以
a=-2,所以最小值为

相关知识

§1.3.1函数的单调性与导数(1课时)


一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的高中教师教学。高中教案的内容具体要怎样写呢?以下是小编为大家收集的“§1.3.1函数的单调性与导数(1课时)”相信您能找到对自己有用的内容。

§1.3.1函数的单调性与导数(1课时)
【学情分析】:
高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。本节内容就是通过对函数导数计算,来判定可导函数增减性。
【教学目标】:
(1)正确理解利用导数判断函数的单调性的原理;
(2)掌握利用导数判断函数单调性的方法
(3)能够利用导数解释实际问题中的函数单调性
【教学重点】:
利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间
【教学过程设计】:
教学环节教学活动设计意图
情景引入过程
从高台跳水运动员的高度h随时间t变化的函数:
分析运动动员的运动过程:
上升→最高点→下降
运动员瞬时速度变换过程:
减速→0→加速从实际问题中物理量入手
学生容易接受
实际意义向函数意义过渡从函数的角度分析上述过程:
先增后减
由正数减小到0,再由0减小到负数
将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍
引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系
进一步的函数单调性与导数正负验证,加深两者之间的关系
我们能否得出以下结论:
在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减
答案是肯定的
从导数的概念给出解释表明函数在此点处的切线斜率是由左下向右上,因此在附近单调递增
表明函数在此点处的切线斜率是由左上向右下,因此在附近单调递减
所以,若,则,f(x)为增函数
同理可说明时,f(x)为减函数
用导数的几何意义理解导数正负与单调性的内在关系,帮助理解与记忆
导数正负与函数单调性总结若y=f(x)在区间(a,b)上可导,则
(1)在(a,b)内,y=f(x)在(a,b)单调递增
(2)在(a,b)内,y=f(x)在(a,b)单调递减
抽象概括我们的心法手册(用以指导我们拆解题目)
例题精讲1、根据导数正负判断函数单调性
教材例1在教学环节中的处理方式:
以学生的自学为主,可以更改部分数据,让学生动手模仿。
小结:导数的正负→函数的增减→构建函数大致形状
提醒学生观察的点的图像特点(为下节埋下伏笔)
丢出思考题:“”的点是否一定对应函数的最值(由于学生尚未解除“极值”的概念,暂时还是以最值代替)例题处理的目标就是为达到将“死结论”变成“活套路”
2、利用导数判断函数单调性以及计算求函数单调区间
教材例2在教学环节中的处理方式:
可以先以为例回顾我们高一判断函数单调性的定义法;再与我们导数方法形成对比,体会导数方法的优越性。
引导学生逐步贯彻落实我们之前准备的“心法手册”
判断单调性→计算导数大小→能否判断导数正负
→Y,得出函数单调性;
→N,求“导数大于(小于)0”的不等式的解集→得出单调区间

补充例题:
已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′=1-1x-2=
令>0.解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)

要求根据函数单调性画此函数的草图
3、实际问题中利用导数意义判断函数图像
教材例3的处理方式:
可以根据课程进度作为课堂练习处理
同时还可以引入类似的练习补充(如学生上学路上,距离学校的路程与时间的函数图像)
堂上练习教材练习2——由函数图像写函数导数的正负性
教材练习1——判断函数单调性,计算单调区间针对教材的三个例题作知识强化练习
内容总结体会导数在判断函数单调性方面的极大优越性体会学习导数的重要性

课后练习:
1、函数的递增区间是()
ABCD
答案C对于任何实数都恒成立

2、已知函数在上是单调函数,则实数的
取值范围是()
AB
CD
答案B在恒成立,

3、函数单调递增区间是()
ABCD
答案C令

4、对于上可导的任意函数,若满足,则必有()
AB
CD
答案C当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有

5、函数的单调增区间为,单调减区间为___________________
答案

6、函数的单调递增区间是___________________________
答案

7、已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间
解:(1)的图象经过点,则,
切点为,则的图象经过点

(2)
单调递增区间为

函数的最大值和最小值教案


1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
3.情感和价值目标
(1)认识事物之间的的区别和联系.
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

函数的极值与导数


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案为之后的教学做准备。教案可以让讲的知识能够轻松被学生吸收,帮助教师更好的完成实现教学目标。教案的内容要写些什么更好呢?下面是由小编为大家整理的“函数的极值与导数”,大家不妨来参考。希望您能喜欢!

§3.3.2函数的极值与导数
一、教学目标
知识与技能:理解极大值、极小值的概念;能够运用判别极大值、极小值的方法来求函数的极值;掌握求可导函数的极值的步骤;
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点难点
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
三、教学过程:
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.
四、学情分析
我们的学生属于平行分班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。
五、教学方法
发现式、启发式
新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问
(二)情景导入、展示目标。
设计意图:步步导入,吸引学生的注意力,明确学习目标。
1、有关概念
(1).极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
(2).极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
(3).极大值与极小值统称为极值
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小。
(ⅱ)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间
无确定的大小关系。即一个函数的极大值未必大于极小值,如上图所示,是极大值点,是极小值点,而
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
2.判别f(x0)是极大、极小值的方法:
若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值
3.求可导函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的驻点(一阶导数为0的x的值)
(3)检查f′(x)=0的驻点左右的符号;如果左正右负,那么f(x)在这个驻点处取得极大值;如果左负右正,那么f(x)在这个驻点处取得极小值;如果左右不改变符号,那么f(x)在这个驻点处无极值
(三)合作探究、精讲点拨。
例1.(课本例4)求的极值
解:因为,所以。
令,得
下面分两种情况讨论:
(1)当0,即,或时;(2)当0,即时.
当x变化时,,的变化情况如下表:
—2(-2,2)2

+0-0+
↗极大值
↘极小值

因此,=;
=。
函数的图像如图所示。
例2求y=(x2-1)3+1的极值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2,令y′=0解得x1=-1,x2=0,x3=1
当x变化时,y′,y的变化情况如下表
-1(-1,0)0(0,1)1

-0-0+0+
↘无极值↘极小值0↗无极值↗
∴当x=0时,y有极小值且y极小值=0
例3设,在和处有极值,且=-1,求,,的值,并求出相应的值。
解:,∵是函数的极值点,则-1,1是方程的根,即有,又,则有,由上述三个方程可知,,,此时,函数的表达式为,∴,令,得,当变化时,,的变化情况表:
-1(-1,1)1

+0-0+
↗极大值1↘极小值
-1↗
由上表可知,,
(学生上黑板解答)
多媒体展示探究思考题。
在学生分组实验的过程中教师巡回观察指导。(课堂实录)
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
极大值:
极大值点:
极小值:
极小值点:
极值:
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)

导数与函数的单调性


3.1.1导数与函数的单调性
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用。
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.

如图3.3-3,导数表示函数在点处的切线的斜率.

(图3.3-3)

在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1);(2)
(3);(4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.

(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以.
当,即时,函数;
当,即时,函数;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练

例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.

分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+72.f(x)=+2x3.f(x)=sinx,x4.y=xlnx
2.课本练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性

文章来源:http://m.jab88.com/j/45073.html

更多

最新更新

更多