88教案网

导数与函数的单调性

一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生更好的吸收课堂上所讲的知识点,有效的提高课堂的教学效率。优秀有创意的高中教案要怎样写呢?下面是小编为大家整理的“导数与函数的单调性”,相信您能找到对自己有用的内容。

3.1.1导数与函数的单调性
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用。
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.

如图3.3-3,导数表示函数在点处的切线的斜率.

(图3.3-3)

在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1);(2)
(3);(4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.

(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以.
当,即时,函数;
当,即时,函数;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练

例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.

分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+72.f(x)=+2x3.f(x)=sinx,x4.y=xlnx
2.课本练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性

扩展阅读

§1.3.1函数的单调性与导数(1课时)


一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的高中教师教学。高中教案的内容具体要怎样写呢?以下是小编为大家收集的“§1.3.1函数的单调性与导数(1课时)”相信您能找到对自己有用的内容。

§1.3.1函数的单调性与导数(1课时)
【学情分析】:
高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。本节内容就是通过对函数导数计算,来判定可导函数增减性。
【教学目标】:
(1)正确理解利用导数判断函数的单调性的原理;
(2)掌握利用导数判断函数单调性的方法
(3)能够利用导数解释实际问题中的函数单调性
【教学重点】:
利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间
【教学过程设计】:
教学环节教学活动设计意图
情景引入过程
从高台跳水运动员的高度h随时间t变化的函数:
分析运动动员的运动过程:
上升→最高点→下降
运动员瞬时速度变换过程:
减速→0→加速从实际问题中物理量入手
学生容易接受
实际意义向函数意义过渡从函数的角度分析上述过程:
先增后减
由正数减小到0,再由0减小到负数
将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍
引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系
进一步的函数单调性与导数正负验证,加深两者之间的关系
我们能否得出以下结论:
在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减
答案是肯定的
从导数的概念给出解释表明函数在此点处的切线斜率是由左下向右上,因此在附近单调递增
表明函数在此点处的切线斜率是由左上向右下,因此在附近单调递减
所以,若,则,f(x)为增函数
同理可说明时,f(x)为减函数
用导数的几何意义理解导数正负与单调性的内在关系,帮助理解与记忆
导数正负与函数单调性总结若y=f(x)在区间(a,b)上可导,则
(1)在(a,b)内,y=f(x)在(a,b)单调递增
(2)在(a,b)内,y=f(x)在(a,b)单调递减
抽象概括我们的心法手册(用以指导我们拆解题目)
例题精讲1、根据导数正负判断函数单调性
教材例1在教学环节中的处理方式:
以学生的自学为主,可以更改部分数据,让学生动手模仿。
小结:导数的正负→函数的增减→构建函数大致形状
提醒学生观察的点的图像特点(为下节埋下伏笔)
丢出思考题:“”的点是否一定对应函数的最值(由于学生尚未解除“极值”的概念,暂时还是以最值代替)例题处理的目标就是为达到将“死结论”变成“活套路”
2、利用导数判断函数单调性以及计算求函数单调区间
教材例2在教学环节中的处理方式:
可以先以为例回顾我们高一判断函数单调性的定义法;再与我们导数方法形成对比,体会导数方法的优越性。
引导学生逐步贯彻落实我们之前准备的“心法手册”
判断单调性→计算导数大小→能否判断导数正负
→Y,得出函数单调性;
→N,求“导数大于(小于)0”的不等式的解集→得出单调区间

补充例题:
已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′=1-1x-2=
令>0.解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)

要求根据函数单调性画此函数的草图
3、实际问题中利用导数意义判断函数图像
教材例3的处理方式:
可以根据课程进度作为课堂练习处理
同时还可以引入类似的练习补充(如学生上学路上,距离学校的路程与时间的函数图像)
堂上练习教材练习2——由函数图像写函数导数的正负性
教材练习1——判断函数单调性,计算单调区间针对教材的三个例题作知识强化练习
内容总结体会导数在判断函数单调性方面的极大优越性体会学习导数的重要性

课后练习:
1、函数的递增区间是()
ABCD
答案C对于任何实数都恒成立

2、已知函数在上是单调函数,则实数的
取值范围是()
AB
CD
答案B在恒成立,

3、函数单调递增区间是()
ABCD
答案C令

4、对于上可导的任意函数,若满足,则必有()
AB
CD
答案C当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有

5、函数的单调增区间为,单调减区间为___________________
答案

6、函数的单调递增区间是___________________________
答案

7、已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间
解:(1)的图象经过点,则,
切点为,则的图象经过点

(2)
单调递增区间为

函数的单调性


一名合格的教师要充分考虑学习的趣味性,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师有计划有步骤有质量的完成教学任务。你知道如何去写好一份优秀的高中教案呢?为了让您在使用时更加简单方便,下面是小编整理的“函数的单调性”,仅供您在工作和学习中参考。

数学必修1:函数的单调性
教学目标:理解函数的单调性
教学重点:函数单调性的概念和判定
教学过程:
1、过对函数、、及的观察提出有关函数单调性的问题.
2、阅读教材明确单调递增、单调递减和单调区间的概念
3、
例1、如图是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,及在每一单调区间上,是增函数还是减函数。
解:函数的单调区间有,
其中在区间,
上是减函数,在区间上是
增函数。
注意:1单调区间的书写
2各单调区间之间的关系
以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?
例2、证明函数在R上是增函数。
证明:设是R上的任意两个实数,且,则

所以,在R上是增函数。
例3、证明函数在上是减函数。
证明:设是上的任意两个实数,且,则
由,得,且
于是
所以,在上是减函数。
利用定义证明函数单调性的步骤:
(1)取值
(2)计算、
(3)对比符号
(4)结论

课堂练习:教材第50页练习A、B
小结:本节课学习了单调递增、单调递减和单调区间的概念及判定方法
课后作业:第57页习题2-1A第5题

函数单调性


年级高一

学科数学

课题

函数的单调性(2)

授课时间

撰写人

刘报

学习重点

函数单调性证明

学习难点

函数单调性应用及证明

学习目标

1.理解函数的最大(小)值及其几何意义;2.学会运用函数图象理解和研究函数的性质.3.函数单调性证明

教学过程

一自主学习

1.指出函数的单调区间及单调性,并进行证明.2.函数的最小值为,的最大值为.

3:先完成下表,

函数

最高点

最低点

,

,

4设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的。

仿照最大值定义,给出最小值(MinimumValue)的定义.

二师生互动

例1一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是,那么什么时刻距离地面的高度达到最大?最大是多少?

变式:经过多少秒后炮弹落地?

试试:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?

例2求在区间[3,6]上的最大值和最小值.

变式:求的最大值和最小值.

练一练函数的最小值为,最大值为.如果是呢?

三巩固练习

1.函数的最大值是().A.-1B.0C.1D.22.函数的最小值是().A.0B.-1C.2D.33.函数的最小值是().A.0B.2C.4D.4.已知函数的图象关于y轴对称,且在区间上,当时,有最小值

3,则在区间上,当时,有最值为.5.函数的最大值为,最小值为.6.用多种方法求函数最小值.

四课后反思

五课后巩固练习

1.作出函数的简图,研究当自变量x在下列范围内取值时的最大值与最小值.(1);(2);(3).2.已知函数在区间是增函数,则实数a的取值范围

函数单调性与奇偶性


函数单调性与奇偶性

教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

函数的奇偶性教学设计方案

教学目标

1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一.引入新课

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)

结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二.讲解新课

2.函数的奇偶性(板书)

教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判断图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)

从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)

(给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识)

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)

例1.判断下列函数的奇偶性(板书)

(1);(2);

(3);;

(5);(6).

(要求学生口答,选出1-2个题说过程)

解:(1)是奇函数.(2)是偶函数.

(3),是偶函数.

前三个题做完,教师做一次小结,判断奇偶性,只需验证与之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?

学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.

教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)

证明:既是奇函数也是偶函数,

=,且,

=.

,即.

证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类

(4)函数按其是否具有奇偶性可分为四类:(板书)

例3.判断下列函数的奇偶性(板书)

(1);(2);(3).

由学生回答,不完整之处教师补充.

解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.

(2)当时,既是奇函数也是偶函数,当时,是偶函数.

(3)当时,于是,

当时,,于是=,

综上是奇函数.

教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.

三.小结

1.奇偶性的概念

2.判断中注意的问题

四.作业略

五.板书设计

2.函数的奇偶性例1.例3.

(1)偶函数定义

(2)奇函数定义

(3)定义域关于原点对称是函数例2.小结

具备奇偶性的必要条件

(4)函数按奇偶性分类分四类

探究活动

(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?

(2)判断函数在上的单调性,并加以证明.

在此基础上试利用这个函数的单调性解决下面的问题:

设为三角形的三条边,求证:.

文章来源:http://m.jab88.com/j/44748.html

更多

最新更新

更多