88教案网

1.4.1有理数的乘法(3)(新人教七上)

一般给学生们上课之前,老师就早早地准备好了教案课件,大家都在十分严谨的想教案课件。只有规划好教案课件计划,新的工作才会更顺利!你们清楚有哪些教案课件范文呢?小编收集并整理了“1.4.1有理数的乘法(3)(新人教七上)”,供大家借鉴和使用,希望大家分享!

1JAb88.cOM.4.1有理数的乘法(3)

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

〖探索1〗

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

〖阅读理解〗

乘法交换律和结合律(见P40)

〖探索2〗

下列计算若按顺序依次相乘怎样算?用运算律为什么能简化运算?

(1)25×2004×4;(2)-

×1999×.

〖探索3〗

运用运算律真的能节省时间吗?分两个大组,比一比:

计算×(-198)×().

〖练习1〗

运用乘法交换律和结合律简化运算:

(1)1999×125×8;(2)-1097××().

〖探索4〗

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形ABCD的面积吗?

〖例题学习〗

P41.例5

〖作业〗

P41.练习

〖补充作业〗

1.计算(注意运用分配律简化运算):

(1)-6×(100-);(2)×(-12).

(2)2×(-3)×4×(-5)×(-6)×7×8×9×(-10);

(3)2×(-3)×4×(-5)×(-6)×0×7×8×9×(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)×(-3)×(-3)×(-3)×(-3).

5.运用乘法交换律和结合律简化运算:

(1)-98××(-0.6);(2)-1999××(-)××()

【补充练习】

1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x(2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12π-18π-9π;(4)-z-7z-8z.

延伸阅读

1.4.1有理数的乘法


教案课件是老师上课做的提前准备,大家开始动笔写自己的教案课件了。只有制定教案课件工作计划,接下来的工作才会更顺利!适合教案课件的范文有多少呢?以下是小编收集整理的“1.4.1有理数的乘法”,供大家借鉴和使用,希望大家分享!

1.4.1有理数的乘法

教学任务分析

知识技能

(1)使学生掌握有理数乘法法则,并初步了解有理数乘法法则的合理性;

(2)学生能够熟练地进行有理数乘法运算.

数学思考

通过对问题的交互探索,培养观察、分析、抽象、概括的能力.

解决问题

能够利用有理数的乘法法则进行简单计算;能够利用有理数的运算律进行简便计算.

情感态度

培养学生积极思考和勇于探索的精神,使他们形成良好的学习习惯.

重点

能按有理数乘法法则进行有理数乘法运算.

难点

对含有负因数的乘法法则的理解和运算

教学流程安排

活动流程图

活动内容和目的

一、创设情景,引入本节课要研究的问题――有理数的乘法.

二、探索新知,归纳法则.

三、应用法则、巩固法则.

四、主体活动,探索乘法运算律.

通过简单的问题,引入新课.

通过各个情况的探究,探索发现有理数的乘法法则.

利用有理数的乘法法则解决简单问题,并对一些问题归纳总结,得出一般性的结论.

通过学生的主体探究活动,得到乘法运算律,并利用乘法运算律进行准确计算.

教学过程设计

一、创设情景,引入本节课要研究的问题――有理数的乘法

前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:

1.等于多少?表示什么?答案是:,表示3个2相加,

即:.

2.请将写成乘法算式?

它怎么计算呢?这就是我们今天要研究的有理数的乘法.

二、探索新知,归纳法则

以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.

在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:

(1)

其中2看作向东运动2米,看作沿此方向运动3次.用数轴表示如下:

结果怎样呢?(向东运动了6米),所以有:.

(2)

其中-2看作向西运动2米,看作沿此方向运动3次.用数轴表示如下:

结果怎样?(向西运动了6米),所以有:.

(3)

其中2看作向东运动2米,看作沿与此相反的方向运动3次,即向西运动了3次,共向西运动了6米.所以有:.

(4)

请同学们说出对此式的理解,并说出结论.

其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.

(5),,,

请同学们说说对这四个式子的理解,并得出结论.(都等于0)

从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?

②积的绝对值与两个因数的绝对值又有什么样的关系?

(学生活动时间2分钟)

学生回答,老师完善,得出有理数乘法的法则:

有理数乘法法则

同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;

0与任何有理数相乘仍得0.

三、应用法则、巩固法则

我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题

1.尝试训练,巩固练习(出示投影)

(1)确定下列两个有理数积的符号:

①②③④

(学生口答,解释原因)

(2)计算:

①②③④

⑤⑥⑦⑧

(学生自主完成,查漏补缺)

2.例题1

计算:①②

(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:

(1)确定积的符号;(2)计算积的绝对值)

巩固练习(出示投影)

①②③④

3.例题2

计算:①②③

教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.

4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.

确定下列积的符号,你能从中发现什么?

①②

③④

学生归纳结论:

结论1:有一个因数为0,则积为0;

结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.

巩固练习:判断下列积的符号(口答)

①②

③④

四、主体活动,探索乘法运算律

探索1:任意选择两个有理数(至少有一个是负数)填入下式的□和○中,并比较结果:□×○○×□.

归纳(乘法交换律):两个有理数相乘,交换因数的位置,积不变,

即:ab=ba.

探索2:任意选择三个有理数(至少有一个是负数)填入下式的□、○和◇中,并比较结果:(□×○)×◇□×(○×◇).

归纳(乘法结合律):三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,

即:(ab)c=a(bc).

探索3:任意选择三个有理数(至少有一个是负数)填入下式的□、○和◇中,并比较结果:(□+○)×◇□×◇+○×◇).

归纳(乘法分配律):一个数和两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加,

即:(a+b)c=ac+bc.

巩固练习:

计算(1);(2)

(3)(4)

(5)

(6)

学生活动设计:

学生独立思考,必要时可以相互交流,教师可以适时的提醒,学生在解决问题的过程中,体会:乘法交换律、乘法结合律、乘法对加法的分配律都是成立的.事实上,可以推出在任意多个因数相乘时,各因数都可以任意的交换位置,也可以任意地结合;一个数和任意多个数的和相乘时,分配律依然成立,特别是解决第(6)个问题时,让学生寻找不同的方法,发现逆用乘法分配律可以简化计算:

五、小结与作业

小结:

1.有理数的乘法;2.有理数乘法运算律.作业:

第47页第1、2、9.

有理数的乘法(3)导学案


每个老师需要在上课前弄好自己的教案课件,大家在细心筹备教案课件中。我们制定教案课件工作计划,才能在以后有序的工作!哪些范文是适合教案课件?下面是小编为大家整理的“有理数的乘法(3)导学案”,大家不妨来参考。希望您能喜欢!

1.4有理数的乘除法(3)有理数的乘法(3)导学案设计
题目1.4有理数的乘除法(3)有理数的乘法(3)课时1
学校星火
一中教者年级七年学科数学
设计
来源自我设计教学
时间年9月25日



标1、熟练有理数的乘法运算并能用乘法运算律简化运算;
2、学生通过观察、思考、探究、讨论,主动地进行学习;

点正确运用运算律,使运算简化

点运用运算律,使运算简化
学习方法小组学习



程一、知识链接
1、请同学们计算.并比较它们的结果:

(1)(-6)×5=5×(-6)=

(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]=

请以小组为单位,相互检查,看计算对了吗?

二、自主探究
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积。
即:ab=
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积
即:(ab)c=
4、新知应用
例题4
用两种方法计算(+-)×12;
解法一:解法二:
【课堂练习】:
(课本P33练习)
1、(-85)×(-25)×(-4);

2、(-)×15×(-1);

3、()×30;





1.运用运算律填空.
(1)-2×-3=-3×(_____).
(2)[-3×2]×(-4)=-3×[(______)×(______)].
(3)-5×[-2+-3]=-5×(_____)+(_____)×-3

2.选择题
(1)若a×b0,必有()
Aa0,b0Ba0,b0Ca,b同号Da,b异号
(2)利用分配律计算时,正确的方案可以是()
AB
CD
3.运用运算律计算:
(1)(-25)×(-85)×(-4)(2)14-12-18×16

(3)60×37-60×17+60×57(4)(—100)×(-+-0.1)

(5)(-7.33)×(42.07)+(-2.07)×(-7.33)

(6)(-7)×(-)×;(7)9×18;

(8)-9×(-11)+12×(-9);(9);

(10)18×-23+13×23-4×23



思你有什么收获?

教学反思:
有了小学学过的知识,这节课学生学习起来并不吃力,但是有关符号的确定还是难点,需要在以后的学习中不断加强

有理数的乘法1


1.5.1有理数的乘法
教学目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
教学过程:
一、创设情景,导入新课
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节课我们就来探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语文舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4)2×(-3.5)×(-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
①(-4)×5×(-0.25)②×()×(-2)
③×()×0×()
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

练习:课本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号;(2)把绝对值相乘。
五、作业:P39习题1.5A组1、2

教学后记

文章来源:http://m.jab88.com/j/44746.html

更多

最新更新

更多