§1.3.2函数的极值与导数(1课时)
【学情分析】:
在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。
【教学目标】:
(1)理解极大值、极小值的概念.
(2)能够运用判别极大值、极小值的方法来求函数的极值.
(3)掌握求可导函数的极值的步骤
【教学重点】:
极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
【教学难点】:
极大、极小值概念的理解,熟悉求可导函数的极值的步骤
【教学过程设计】:
教学环节教学活动设计意图
利用教材在
§3.3.1中的
例1引入函数的极值概念
①观察y=f(x)的图像在x=1点的函数值f(1)与x=1附近的其他点的函数值的特征,并描述在x=1点及其附近导数的正负:
f(1)在x=1点及其附近是最小——;
y=f(x)在x=1附近的左侧是单减的——;
y=f(x)在x=1附近的右侧是单增的——;
提问:y=f(x)在x=1处是否整个函数的最小值?
不是,只是y=f(x)在x=1处附近的局部最小值
②观察y=f(x)的图像在x=4点的函数值f(4)与x=4附近的其他点的函数值的特征,并描述在x=4点及其附近导数的正负:
学生模仿完成考虑到极值与最值容易混淆,学生对已有知识的同化易接受,我们以§3.3.1
中的例1引出极值的概念,具体直观,同时对极值与最值区分是一目了然的。
概念抽象y=f(x)在定义域上可导,
①若,且y=f(x)在x=a附近的左侧满足;在x=a附近的右侧满足,则称点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值
②若,且y=f(x)在x=b附近的左侧满足;在x=b附近的右侧满足,则称点b叫做y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值
由具体函数图像抽象上升到一般极值概念
函数极值概念强化练习概念判断练习:
(1)函数的极大值是函数在定义域上的最大值
(2)函数在某个区间或定义域上的极大值是唯一的
(3)函数某区间上的极大值一定大于极小值
(4)函数的极值点,导数一定为零
(5)导数为零的点一定是函数的极值点
答案:(1)错(2)错(3)错(4)对(5)错深化学生对函数极值的概念,以及函数取极值与的逻辑关系
极值概念理解的总结提高(ⅰ)极值是一个局部概念。由定义可知极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而,如下图
如何判别f(x0)是极大、极小值填空:
(1)若满足,且在的两侧的导数________,则是的极值点,是极值,
(2)如果在两侧满足“左正右负”,则是的_______点,是_______;
(3)如果在两侧满足“左负右正”,则是的_______点,是_______.
让学生总结判断极值的方法。
(1)异号;(2)极大值;极大值;
(3)极小值;极小值
例题精讲1、看图识极值(点)
说出极值点与相应的极值
2、求函数的极值(点)
对教材例1的处理方式:
要求阅读教材解析,模仿练习。以眼动、心动、手动的方式让学生对求解函数的极值的步骤有较深的印象。
函数极值(点)计算要加强练习,提高熟练程度。
作为平行班的学生基础不牢,应以最基本的几类函数求导练习为主,切忌本末倒置:让学生把重心放在导数计算上,而忽视了求极值(点)的方法步骤
设置上可以先让学生回忆几类基本函数的求导公式,板书在黑板上以学生查用之需。
补充练习:
求函数y=2x2+5x的极值
答案:x=-5/4;y=-25/8极小值
求函数y=3x-x3的极值
答案:x=-1,y=-2极小值;
X=1,y=2极大值
加强熟练程度与运算速度加强对极值(点)的函数图像理解与认识
要注意结合图象理解极大、极小值概念
判断极值点的关键是这点两侧的导数异号通过例题与练习加深对极大、极小值概念的理解,以及熟悉求函数极值的方法与步骤
方法小结求函数极值的方法与步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
课后练习
1、函数在一点的导数值为是函数在这点取极值的()
A充分条件B必要条件
C充要条件D必要非充分条件
答案D对于不能推出在取极值,反之成立
2、函数有()
A极大值,极小值
B极大值,极小值
C极大值,无极小值
D极小值,无极大值
答案C,当时,;当时,
当时,;取不到,无极小值
3、函数的定义域为开区间,导函数在内的图象如图所示,
则函数在开区间内有极小值点()
A个B个C个D个
答案A极小值点应有先减后增的特点,即
4、函数,已知在时取得极值,则a=()
A,2B.3C.4D.5
答案:
5、若函数在处有极大值,则常数的值为_________;
答案,时取极小值
6、函数在处取得极值,则m=__________
答案0
7、已知函数,当时,有极大值;
(1)求的值;(2)求函数的极小值
解:(1)当时,,
即
(2),令,得
高二数学教案:《函数的极值与导数》教学设计
一、教学目标
1 知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
2 过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
3 情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提问C类学生回答,A,B类学生做补充)
函数的极值与导数教案 2、观察图1.3.8 表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题
函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案
函数的极值与导数教案
函数的极值与导数教案函数的极值与导数教案
(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数函数的极值与导数教案在t=a处的导数是多少呢?
(2)在点t=a附近的图象有什么特点?
(3)点t=a附近的导数符号有什么变化规律?
共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数函数的极值与导数教案单调递增, 函数的极值与导数教案 >0;当t>a时,函数函数的极值与导数教案单调递减, 函数的极值与导数教案 <0,即当t在a的附近从小到大经过a时, 函数的极值与导数教案 先正后负,且函数的极值与导数教案连续变化,于是h/(a)=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?
探索研讨
函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:
函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?
(2) 函数y=f(x)在a.b.点的导数值是多少?
(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点, 极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?
函数的极值与导数教案讲解例题
例4 求函数函数的极值与导数教案的极值
教师分析:①求f/(x),解出f/(x)=0,找函数极点; ②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.
学生动手做,教师引导
解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=(x-2)(x+2)令函数的极值与导数教案=0,解得x=2,或x=-2.
函数的极值与导数教案
函数的极值与导数教案
下面分两种情况讨论:
(1) 当函数的极值与导数教案>0,即x>2,或x<-2时;
(2) 当函数的极值与导数教案<0,即-2<x<2时.
当x变化时, 函数的极值与导数教案 ,f(x)的变化情况如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
函数的极值与导数教案
+
0
_
0
+
f(x)
单调递增
函数的极值与导数教案
函数的极值与导数教案单调递减
函数的极值与导数教案
单调递增
函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= 函数的极值与导数教案 ;当x=2时,f(x)有极
小值,且极小值为f(2)= 函数的极值与导数教案
函数函数的极值与导数教案的图象如:
函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:
函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:
(1) 如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案<0,那么f(x0)是极大值.
(2) 如果在x0附近的左边函数的极值与导数教案<0,右边函数的极值与导数教案>0,那么f(x0)是极小值
课堂练习
1、求函数f(x)=3x-x3的极值
2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,
求函数f(x)的解析式及单调区间。
C类学生做第1题,A,B类学生在第1,2题。
课后思考题
1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。
2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。
课堂小结
1、函数极值的定义
2、函数极值求解步骤
3、一个点为函数的极值点的充要条件。
作业 P32 5 ① ④
教学反思
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案
研讨评议
教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。
23.函数的极值与最值
一、课前准备:
【自主梳理】
1.若函数f(x)在点x0的附近恒有(或),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点).
2.求可导函数极值的步骤:
①求导数;
②求方程的根;
③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极值;如果左负右正,那么函数y=f(x)在这个根处取得极值.
3.求可导函数最大值与最小值的步骤:
①求y=f(x)在[a,b]内的极值;
②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
【自我检测】
1.函数的极大值为.
2.函数在上的最大值为.
3.若函数既有极大值又有极小值,则的取值范围为.
4.已知函数,若对任意都有,则的取值范围是.
(说明:以上内容学生自主完成,原则上教师课堂不讲)
二、课堂活动:
【例1】填空题:
(1)函数的极小值是__________.
(2)函数在区间上的最小值是________;最大值是__________.
(3)若函数在处取极值,则实数=_.
(4)已知函数在时有极值0,则=_.
【例2】设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
【例3】如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
课堂小结
三、课后作业
1.若没有极值,则的取值范围为.?
2.如图是导数的图象,对于下列四个判断:?
①在[-2,-1]上是增函数;?
②是的极小值点;?
③在[-1,2]上是增函数,在[2,4]上是减函数;?
④是的极小值点.?
其中判断正确的是.?
3.若函数在(0,1)内有极小值,则的取值范围为.
4.函数,在x=1时有极值10,则的值为.
5.下列关于函数的判断正确的是.
①f(x)0的解集是{x|0x2};?
②f(-)是极小值,f()是极大值;?
③f(x)没有最小值,也没有最大值.?
6.设函数在处取得极值,则的值为.
7.已知函数(为常数且)有极值9,则的值为.
8.若函数在上的最大值为,则的值为.
9.设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.
10.已知函数,求函数在[1,2]上的最大值.
四、纠错分析
错题卡题号错题原因分析
参考答案:
【自我检测】
1.72.3.4.
例1:(1)0(2)1,(3)3(4)11
例2:解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:
递增极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.
例3:解:(1)由折起的过程可知,PE⊥平面ABC,,
V(x)=()
(2),所以时,,V(x)单调递增;时,V(x)单调递减;因此x=6时,V(x)取得最大值;
课后作业
1.[-1,2]2.②③3.0b14.a=-4,b=11
5.?①②6.17.28.
9.解:(Ⅰ),
因为函数在及取得极值,则有,.
即
解得,.
(Ⅱ)由(Ⅰ)可知,,
.
当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
10.解:∵,∴
令,即,得.?
∴f(x)在(-∞,0),上是减函数,在上是增函数.?
①当,即时,在(1,2)上是减函数,?∴.
②当,即时,在上是减函数,
?∴.
③当,即时,在上是增函数,?
∴.
综上所述,当时,的最大值为,?
当时,的最大值为,
当时,的最大值为.
俗话说,居安思危,思则有备,有备无患。作为教师准备好教案是必不可少的一步。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师更好的完成实现教学目标。那么一篇好的教案要怎么才能写好呢?小编收集并整理了“函数的极值”,仅供参考,欢迎大家阅读。
3.1.2函数的极值
一、复习引入:
1.常见函数的导数公式:
;;;;;;;
2.法则1
法则2,
法则3
3.复合函数的导数:(理科)
4.函数的导数与函数的单调性的关系:设函数y=f(x)在某个区间内有导数,如果在这个区间内0,那么函数y=f(x)在为这个区间内的增函数;如果在这个区间内0,那么函数y=f(x)在为这个区间内的减函数
5.用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x).②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间
二、讲解新课:
1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
3.极大值与极小值统称为极值
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
4.判别f(x0)是极大、极小值的方法:
若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值
5.求可导函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数
(2)求方程=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
三、讲解范例:
例1求y=x3-4x+的极值
解:y′=(x3-4x+)′=x2-4=(x+2)(x-2)令y′=0,解得x1=-2,x2=2
当x变化时,y′,y的变化情况如下表
-2(-2,2)2
+0-0+
↗极大值
↘极小值
↗
∴当x=-2时,y有极大值且y极大值=当x=2时,y有极小值且y极小值=-5
例2求y=(x2-1)3+1的极值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2令y′=0解得x1=-1,x2=0,x3=1
当x变化时,y′,y的变化情况如下表
-1(-1,0)0(0,1)1
-0-0+0+
↘无极值↘极小值0↗无极值↗
∴当x=0时,y有极小值且y极小值=0
求极值的具体步骤:第一,求导数.第二,令=0求方程的根,第三,列表,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右都是正,或者左右都是负,那么f(x)在这根处无极值.
如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点
四、课堂练习:
1.求下列函数的极值.
(1)y=x2-7x+6(2)y=x3-27x
(1)解:y′=(x2-7x+6)′=2x-7令y′=0,解得x=.
当x变化时,y′,y的变化情况如下表.
-0+
↘极小值
↗
∴当x=时,y有极小值,且y极小值=-
(2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3)令y′=0,解得x1=-3,x2=3.
当x变化时,y′,y的变化情况如下表
-3(-3,3)3
+0-0+
↗极大值54↘极小值-54↗
∴当x=-3时,y有极大值,且y极大值=54当x=3时,y有极小值,且y极小值=-54
五、小结:函数的极大、极小值的定义以及判别方法.求可导函数f(x)的极值的三个步骤.还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点
文章来源:http://m.jab88.com/j/37900.html
更多