一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的高中教师教学。高中教案的内容具体要怎样写呢?以下是小编为大家收集的“§1.3.1函数的单调性与导数(1课时)”相信您能找到对自己有用的内容。
§1.3.1函数的单调性与导数(1课时)
【学情分析】:
高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。本节内容就是通过对函数导数计算,来判定可导函数增减性。
【教学目标】:
(1)正确理解利用导数判断函数的单调性的原理;
(2)掌握利用导数判断函数单调性的方法
(3)能够利用导数解释实际问题中的函数单调性
【教学重点】:
利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间
【教学过程设计】:
教学环节教学活动设计意图
情景引入过程
从高台跳水运动员的高度h随时间t变化的函数:
分析运动动员的运动过程:
上升→最高点→下降
运动员瞬时速度变换过程:
减速→0→加速从实际问题中物理量入手
学生容易接受
实际意义向函数意义过渡从函数的角度分析上述过程:
先增后减
由正数减小到0,再由0减小到负数
将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍
引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系
进一步的函数单调性与导数正负验证,加深两者之间的关系
我们能否得出以下结论:
在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减
答案是肯定的
从导数的概念给出解释表明函数在此点处的切线斜率是由左下向右上,因此在附近单调递增
表明函数在此点处的切线斜率是由左上向右下,因此在附近单调递减
所以,若,则,f(x)为增函数
同理可说明时,f(x)为减函数
用导数的几何意义理解导数正负与单调性的内在关系,帮助理解与记忆
导数正负与函数单调性总结若y=f(x)在区间(a,b)上可导,则
(1)在(a,b)内,y=f(x)在(a,b)单调递增
(2)在(a,b)内,y=f(x)在(a,b)单调递减
抽象概括我们的心法手册(用以指导我们拆解题目)
例题精讲1、根据导数正负判断函数单调性
教材例1在教学环节中的处理方式:
以学生的自学为主,可以更改部分数据,让学生动手模仿。
小结:导数的正负→函数的增减→构建函数大致形状
提醒学生观察的点的图像特点(为下节埋下伏笔)
丢出思考题:“”的点是否一定对应函数的最值(由于学生尚未解除“极值”的概念,暂时还是以最值代替)例题处理的目标就是为达到将“死结论”变成“活套路”
2、利用导数判断函数单调性以及计算求函数单调区间
教材例2在教学环节中的处理方式:
可以先以为例回顾我们高一判断函数单调性的定义法;再与我们导数方法形成对比,体会导数方法的优越性。
引导学生逐步贯彻落实我们之前准备的“心法手册”
判断单调性→计算导数大小→能否判断导数正负
→Y,得出函数单调性;
→N,求“导数大于(小于)0”的不等式的解集→得出单调区间
补充例题:
已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′=1-1x-2=
令>0.解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
要求根据函数单调性画此函数的草图
3、实际问题中利用导数意义判断函数图像
教材例3的处理方式:
可以根据课程进度作为课堂练习处理
同时还可以引入类似的练习补充(如学生上学路上,距离学校的路程与时间的函数图像)
堂上练习教材练习2——由函数图像写函数导数的正负性
教材练习1——判断函数单调性,计算单调区间针对教材的三个例题作知识强化练习
内容总结体会导数在判断函数单调性方面的极大优越性体会学习导数的重要性
课后练习:
1、函数的递增区间是()
ABCD
答案C对于任何实数都恒成立
2、已知函数在上是单调函数,则实数的
取值范围是()
AB
CD
答案B在恒成立,
3、函数单调递增区间是()
ABCD
答案C令
4、对于上可导的任意函数,若满足,则必有()
AB
CD
答案C当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有
得
5、函数的单调增区间为,单调减区间为___________________
答案
6、函数的单调递增区间是___________________________
答案
7、已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间
解:(1)的图象经过点,则,
切点为,则的图象经过点
得
(2)
单调递增区间为
每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“高二数学《函数的极值与导数》学案”,仅供参考,欢迎大家阅读。
高二数学《函数的极值与导数》学案
一、教学目标
1知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
2过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
3情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提问C类学生回答,A,B类学生做补充)
函数的极值与导数教案2、观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题
函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案
函数的极值与导数教案
函数的极值与导数教案函数的极值与导数教案
(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数函数的极值与导数教案在t=a处的导数是多少呢?
(2)在点t=a附近的图象有什么特点?
(3)点t=a附近的导数符号有什么变化规律?
共同归纳:函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数函数的极值与导数教案单调递增,函数的极值与导数教案>0;当t>a时,函数函数的极值与导数教案单调递减,函数的极值与导数教案<0,即当t在a的附近从小到大经过a时,函数的极值与导数教案先正后负,且函数的极值与导数教案连续变化,于是h/(a)=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?
二探索研讨
函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:
函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?
(2)函数y=f(x)在a.b.点的导数值是多少?
(3)在a.b点附近,y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点,极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?
函数的极值与导数教案三讲解例题
例4求函数函数的极值与导数教案的极值
教师分析:①求f/(x),解出f/(x)=0,找函数极点;②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.
学生动手做,教师引导
解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=(x-2)(x+2)令函数的极值与导数教案=0,解得x=2,或x=-2.
函数的极值与导数教案
函数的极值与导数教案
下面分两种情况讨论:
(1)当函数的极值与导数教案>0,即x>2,或x<-2时;
(2)当函数的极值与导数教案<0,即-2<x<2时.
当x变化时,函数的极值与导数教案,f(x)的变化情况如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
函数的极值与导数教案
+
0
_
0
+
f(x)
单调递增
函数的极值与导数教案
函数的极值与导数教案单调递减
函数的极值与导数教案
单调递增
函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)=函数的极值与导数教案;当x=2时,f(x)有极
小值,且极小值为f(2)=函数的极值与导数教案
函数函数的极值与导数教案的图象如:
函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:
函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:
(1)如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案<0,那么f(x0)是极大值.
(2)如果在x0附近的左边函数的极值与导数教案<0,右边函数的极值与导数教案>0,那么f(x0)是极小值
四课堂练习
1、求函数f(x)=3x-x3的极值
2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,
求函数f(x)的解析式及单调区间。
C类学生做第1题,A,B类学生在第1,2题。
五课后思考题
1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。
2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。
六课堂小结
1、函数极值的定义
2、函数极值求解步骤
3、一个点为函数的极值点的充要条件。
七作业P325①④
教学反思
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案
研讨评议
教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。
一名合格的教师要充分考虑学习的趣味性,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?急您所急,小编为朋友们了收集和编辑了“§1.3.3函数的最大(小)值与导数(1课时)”,供大家参考,希望能帮助到有需要的朋友。
§1.3.3函数的最大(小)值与导数(1课时)
【学情分析】:
这部分是在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法,然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法,最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法
【教学目标】:
(1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念
(2)使学生掌握用导数求函数最值的方法和步骤
【教学重点】:
利用导数求函数的最大值和最小值的方法.
【教学难点】:
函数的最大值、最小值与函数的极大值和极小值的区别与联系.熟练计算函数最值的步骤
【教学过程设计】:
教学环节教学活动设计意图
复习引入设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极大值f(x0),x0是极大值点,则对x0附近的所有的点,都有f(x)____f(x0)
设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极小值f(x0),x0是极小值点,则对x0附近的所有的点,都有f(x)____f(x0)知识的巩固
概念对比回顾以前所学关于最值的概念,形成对比认识:
函数最大值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值
函数最小值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值
思考:你觉得极值与最值的区别在哪里?让学生发现极值与最值的概念区别,
概念辨析练习(1)函数的极大(小)值一定是函数的最大(小)值,极大(小)值点就是最大(小)值点
(2)函数的最大(小)值一定是函数的极大(小)值,最大(小)值点就是极大(小)值点
(3)函数y=f(x)在x=a处取得极值是函数y=f(x)在x=a处
取得最值的____________(充要性)通过练习深化他们对函数取极值与最值的区别
对极值与最值概念的深化理解(1)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
(2)函数的最值是描述函数在整个定义域上的整体性质,函数的极值是描述函数在某个局部的性质
(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个点评提高
闭区间上的函数最值问题(1)在闭区间上函数最值的存在性:
通过观察一系列函数在闭区间上的函数图像,并指出函数的最值及相应的最值点:
a.函数y=-x+2在区间[-3,2]的图像
b.函数在区间[1/2,3]的图像
c.函数在区间[-3,0]的图像
d.函数图像如下:
一般性总结:
在闭区间上连续的函数在上必有最大值与最小值.
(连续函数的闭区间定理——数学分析)
(2)在闭区间上函数最值点的分析:
既然在闭区间上连续的函数在上必有最值,那么最值点会是哪些点呢?
通过上述图像的观察,可以发现最值点可能是闭区间的端点,函数的极值点
有无其他可能?
没有——反证法可说明本节的主要内容及主要结论,也是求函数最值的理论根据和方法指引
需要注意的地方判断正误:
(1)在开区间内连续的函数一定有最大值与最小值
(2)函数在闭区间上一定有最大值与最小值
(3)函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
说明:
开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值(1)F;(2)F;(3)T
例题精讲求闭区间上的连续函数的最值
对于教材例5的处理方式:
此题课本直接求出了极值和相应的极值点,个人认为还是让学生经历一个求极值的过程:
先要求学生求函数在区间上的极值及极值点
再提问学生是否可以马上下结论:最值是多少?
务必让学生牢记:求函数的最值不光要求极值,还要计算函数在闭区间端点处的函数值
整个例题的使用务必让学生体会求函数最值的方法与步骤
求闭区间上的连续函数的最值,务必勤加练习,方能熟练掌握其方法,思维方法周密、不缺漏
除教材提供的练习外还可以补充以下练习:
在[0,3]上的最大值和最小值
在上的最大值和最小值
在上的最大值和最小值
在[0,4]上的最大值和最小值
上的最大值和最小值
求闭区间上连续函数最值的方法与步骤总结设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:
⑴求在内的极值;
⑵将的各极值与、比较得出函数在上的最值
课后练习:
1、函数在区间上的最大值和最小值分别为()
A5,-15B5,-4C-4,-15D5,-16
答案D
2、函数在区间上的最小值为()
ABCD
答案D
3、函数的最大值为()
ABCD
答案A令,当时,;当时,,,在定义域内只有一个极值,所以
4、函数在上的最大值是__________最小值是__________
答案
5、函数在区间上的最大值是
答案,比较处的函数值,得
6、求函数
(1)求函数的单调递减区间
(2)函数在区间上的最大值是20,求它在该区间上的最小值
答案:
,为减区间
为增区间
所以
a=-2,所以最小值为
高二数学教案:《函数的极值与导数》教学设计
一、教学目标
1 知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
2 过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
3 情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提问C类学生回答,A,B类学生做补充)
函数的极值与导数教案 2、观察图1.3.8 表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题
函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案
函数的极值与导数教案
函数的极值与导数教案函数的极值与导数教案
(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数函数的极值与导数教案在t=a处的导数是多少呢?
(2)在点t=a附近的图象有什么特点?
(3)点t=a附近的导数符号有什么变化规律?
共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数函数的极值与导数教案单调递增, 函数的极值与导数教案 >0;当t>a时,函数函数的极值与导数教案单调递减, 函数的极值与导数教案 <0,即当t在a的附近从小到大经过a时, 函数的极值与导数教案 先正后负,且函数的极值与导数教案连续变化,于是h/(a)=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?
探索研讨
函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:
函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?
(2) 函数y=f(x)在a.b.点的导数值是多少?
(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点, 极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?
函数的极值与导数教案讲解例题
例4 求函数函数的极值与导数教案的极值
教师分析:①求f/(x),解出f/(x)=0,找函数极点; ②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.
学生动手做,教师引导
解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=(x-2)(x+2)令函数的极值与导数教案=0,解得x=2,或x=-2.
函数的极值与导数教案
函数的极值与导数教案
下面分两种情况讨论:
(1) 当函数的极值与导数教案>0,即x>2,或x<-2时;
(2) 当函数的极值与导数教案<0,即-2<x<2时.
当x变化时, 函数的极值与导数教案 ,f(x)的变化情况如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
函数的极值与导数教案
+
0
_
0
+
f(x)
单调递增
函数的极值与导数教案
函数的极值与导数教案单调递减
函数的极值与导数教案
单调递增
函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= 函数的极值与导数教案 ;当x=2时,f(x)有极
小值,且极小值为f(2)= 函数的极值与导数教案
函数函数的极值与导数教案的图象如:
函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:
函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:
(1) 如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案<0,那么f(x0)是极大值.
(2) 如果在x0附近的左边函数的极值与导数教案<0,右边函数的极值与导数教案>0,那么f(x0)是极小值
课堂练习
1、求函数f(x)=3x-x3的极值
2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,
求函数f(x)的解析式及单调区间。
C类学生做第1题,A,B类学生在第1,2题。
课后思考题
1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。
2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。
课堂小结
1、函数极值的定义
2、函数极值求解步骤
3、一个点为函数的极值点的充要条件。
作业 P32 5 ① ④
教学反思
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案
研讨评议
教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。
文章来源:http://m.jab88.com/j/44987.html
更多