88教案网

新人教A版选修2-3离散型随机变量及其分布列教案1

一名优秀的教师就要对每一课堂负责,准备好一份优秀的教案往往是必不可少的。教案可以让学生们充分体会到学习的快乐,帮助高中教师掌握上课时的教学节奏。您知道高中教案应该要怎么下笔吗?以下是小编为大家收集的“新人教A版选修2-3离散型随机变量及其分布列教案1”仅供参考,希望能为您提供参考!

2.1.2离散型随机变量的分布列
教学目标:
知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
教学重点:离散型随机变量的分布列的概念
教学难点:求简单的离散型随机变量的分布列
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)
请同学们阅读课本P5-6的内容,说明什么是随机变量的分布列?
二、讲解新课:
1.分布列:设离散型随机变量ξ可能取得值为
x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为,则称表
ξx1x2…xi…
PP1P2…Pi…
为随机变量ξ的概率分布,简称ξ的分布列
2.分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴Pi≥0,i=1,2,…;
⑵P1+P2+…=1.
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即
3.两点分布列:
例1.在掷一枚图钉的随机试验中,令
如果针尖向上的概率为,试写出随机变量X的分布列.
解:根据分布列的性质,针尖向下的概率是().于是,随机变量X的分布列是
ξ01
P

像上面这样的分布列称为两点分布列.
两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布(two一pointdistribution),而称=P(X=1)为成功概率.
两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利(Bernoulli)试验,所以还称这种分布为伯努利分布.


,.
4.超几何分布列:
例2.在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数X的分布列;
(2)至少取到1件次品的概率.
解:(1)由于从100件产品中任取3件的结果数为,从100件产品中任取3件,
其中恰有k件次品的结果数为,那么从100件产品中任取3件,其中恰有k件次品的概率为

所以随机变量X的分布列是
X0123
P

(2)根据随机变量X的分布列,可得至少取到1件次品的概率
P(X≥1)=P(X=1)+P(X=2)+P(X=3)
≈0.13806+0.00588+0.00006
=0.14400.
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为
,
其中,且.称分布列
X01…

P

为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布(hypergeometriCdistribution).
例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,其中N=30,M=10,n=5.于是中奖的概率
P(X≥3)=P(X=3)+P(X=4)十P(X=5)
=≈0.191.
思考:如果要将这个游戏的中奖率控制在55%左右,那么应该如何设计中奖规则?

例4.已知一批产品共件,其中件是次品,从中任取件,试求这件产品中所含次品件数的分布律。
解显然,取得的次品数只能是不大于与最小者的非负整数,即的可能取值为:0,1,…,,由古典概型知
此时称服从参数为的超几何分布。
注超几何分布的上述模型中,“任取件”应理解为“不放回地一次取一件,连续取件”.如果是有放回地抽取,就变成了重贝努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数很大时,那么不放回抽样可以近似地看成有放回抽样.因此,当时,超几何分布的极限分布就是二项分布,即有如下定理.
定理如果当时,,那么当时(不变),则

由于普阿松分布又是二项分布的极限分布,于是有:
超几何分布二项分布普阿松分布.
例5.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.
分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.
解:设黄球的个数为n,由题意知
绿球个数为2n,红球个数为4n,盒中的总数为7n.
∴,,.
所以从该盒中随机取出一球所得分数ξ的分布列为
ξ10-1

说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.
例6.某一射手射击所得的环数ξ的分布列如下:
ξ45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率.
分析:“射击一次命中环数≥7”是指互斥事件“ξ=7”、“ξ=8”、“ξ=9”、“ξ=10”的和,根据互斥事件的概率加法公式,可以求得此射手“射击一次命中环数≥7”的概率.
解:根据射手射击所得的环数ξ的分布列,有
P(ξ=7)=0.09,P(ξ=8)=0.28,P(ξ=9)=0.29,P(ξ=10)=0.22.
所求的概率为P(ξ≥7)=0.09+0.28+0.29+0.22=0.88
四、课堂练习:
某一射手射击所得环数分布列为
45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率
解:“射击一次命中环数≥7”是指互斥事件“=7”,“=8”,“=9”,“=10”的和,根据互斥事件的概率加法公式,有:
P(≥7)=P(=7)+P(=8)+P(=9)+P(=10)=0.88
注:求离散型随机变量的概率分布的步骤:
(1)确定随机变量的所有可能的值xi
(2)求出各取值的概率p(=xi)=pi
(3)画出表格
五、小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一(3)离散型随机变量的超几何分布
六、课后作业:
七、板书设计(略)
八、课后记:
预习提纲:
⑴什么叫做离散型随机变量ξ的数学期望?它反映了离散型随机变量的什么特征?
⑵离散型随机变量ξ的数学期望有什么性质?

扩展阅读

2.3离散型随机变量的均值与方差教案一(新人教A版选修2-3)


2.3.2离散型随机变量的方差
教学目标:
知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差
教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题
教具准备:多媒体、实物投影仪。
教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
内容分析:
数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.
回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+
叫做这组数据的方差
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
5.分布列:
ξx1x2…xi…
PP1P2…Pi…
6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.
7.二项分布:ξ~B(n,p),并记=b(k;n,p).
ξ01…k…n
P

8.几何分布:g(k,p)=,其中k=0,1,2,…,.
ξ123…k…
P

9.数学期望:一般地,若离散型随机变量ξ的概率分布为
ξx1x2…xn…
Pp1p2…pn…
则称……为ξ的数学期望,简称期望.
10.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
11平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
12.期望的一个性质:
13.若ξB(n,p),则Eξ=np
二、讲解新课:
1.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,
=++…++…
称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.
2.标准差:的算术平方根叫做随机变量ξ的标准差,记作.
3.方差的性质:(1);(2);
(3)若ξ~B(n,p),则np(1-p)
4.其它:
⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
三、讲解范例:
例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解:抛掷散子所得点数X的分布列为
ξ123456

从而

例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元1200140016001800
获得相应职位的概率P10.40.30.20.1

乙单位不同职位月工资X2/元1000140018002000
获得相应职位的概率P20.40.30.20.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1=1200×0.4+1400×0.3+1600×0.2+1800×0.1
=1400,
DX1=(1200-1400)2×0.4+(1400-1400)2×0.3
+(1600-1400)2×0.2+(1800-1400)2×0.1
=40000;
EX2=1000×0.4+1400×0.3+1800×0.2+2200×0.1=1400,
DX2=(1000-1400)2×0.4+(1400-1400)×0.3+(1800-1400)2×0.2+(2200-1400)2×0.l
=160000.
因为EX1=EX2,DX1DX2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.

例3.设随机变量ξ的分布列为
ξ12…n
P

求Dξ
解:(略),
例4.已知离散型随机变量的概率分布为
1234567

P

离散型随机变量的概率分布为
3.73.83.944.14.24.3
P

求这两个随机变量期望、均方差与标准差
解:;


=0.04,.
点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.
=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差
例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平
解:
+(10-9);
同理有
由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.
点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况
例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床B机床
次品数ξ10123次品数ξ10123
概率P0.70.20.060.04概率P0.80.060.040.10
问哪一台机床加工质量较好
解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,
Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
它们的期望相同,再比较它们的方差
Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2
×0.06+(3-0.44)2×0.04=0.6064,
Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2
×0.04+(3-0.44)2×0.10=0.9264.
∴Dξ1Dξ2故A机床加工较稳定、质量较好.
四、课堂练习:
1.已知,则的值分别是()
A.;B.;C.;D.
答案:1.D
2.一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.
分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.
解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3
当ξ=0时,即第一次取得正品,试验停止,则
P(ξ=0)=
当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则
P(ξ=1)=
当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则
P(ξ=2)=
当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=
所以,Eξ=
3.有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ
分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算
解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98
4.设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4
分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论
证明:因为ξ所有可能取的值为0,1且P(ξ=0)=1-p,P(ξ=1)=p,
所以,Eξ=0×(1-p)+1×p=p
则Dξ=(0-p)2×(1-p)+(1-p)2×p=p(1-p)
5.有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:
ξA110120125130135ξB100115125130145
P0.10.20.40.10.2P0.10.20.40.10.2
其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好
分析:两个随机变量ξA和ξB都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性
解:先比较ξA与ξB的期望值,因为
EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.
所以,它们的期望相同.再比较它们的方差.因为
DξA=(110-125)2×0.1+(120-125)2×0.2+(130-125)2×0.1+(135-125)2×0.2=50,
DξB=(100-125)2×0.1+(110-125)2×0.2+(130-125)2×0.1+(145-125)2×0.2=165.
所以,DξADξB.因此,A种钢筋质量较好
6.在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题
意,可得ξ的分布列为
ξ0525100
P

答:一张彩票的合理价格是0.2元.
五、小结:⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和
,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
六、课后作业:P69练习1,2,3P69A组4B组1,2
1.设~B(n、p)且E=12D=4,求n、p
解:由二次分布的期望与方差性质可知E=npD=np(1-p)
∴∴
2.已知随机变量服从二项分布即~B(6、)求b(2;6,)
解:p(=2)=c62()2()4
3.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和的分布列如下:(注得分越大,水平越高)
123
pA0.10.6
123
p0.3b0.3

试分析甲、乙技术状况
解:由0.1+0.6+a+1a=0.3
0.3+0.3+b=1a=0.4
∴E=2.3,E=2.0
D=0.81,D=0.6
七、板书设计(略)
八、教学反思:
⑴求离散型随机变量ξ的方差、标准差的步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ;
④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要

2.3离散型随机变量的均值与方差教案二(新人教A版选修2-3)


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2.3离散型随机变量的均值与方差教案二(新人教A版选修2-3)”,仅供参考,希望能为您提供参考!

2.3离散型随机变量的均值与方差
2.3.1离散型随机变量的均值
教学目标:
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.
过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟
练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文
价值。
教学重点:离散型随机变量的均值或期望的概念
教学难点:根据离散型随机变量的分布列求出均值或期望
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)
5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为,则称表
ξx1x2…xi…
PP1P2…Pi…
为随机变量ξ的概率分布,简称ξ的分布列
6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.
7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ01…k…n
P

称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
8.离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么
(k=0,1,2,…,).于是得到随机变量ξ的概率分布如下:
ξ123…k…
P


称这样的随机变量ξ服从几何分布
记作g(k,p)=,其中k=0,1,2,…,.
二、讲解新课:
根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下
ξ45678910
P0.020.040.060.090.280.290.22
在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望
根据射手射击所得环数ξ的分布列,
我们可以估计,在n次射击中,预计大约有
次得4环;
次得5环;
…………
次得10环.
故在n次射击的总环数大约为

从而,预计n次射击的平均环数约为

这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.
对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:
….
1.均值或数学期望:一般地,若离散型随机变量ξ的概率分布为
ξx1x2…xn…
Pp1p2…pn…
则称……为ξ的均值或数学期望,简称期望.
2.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
3.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
4.均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为
ξx1x2…xn…
η


Pp1p2…pn…
于是……
=……)……)
=,
由此,我们得到了期望的一个性质:
5.若ξB(n,p),则Eξ=np
证明如下:
∵,
∴0×+1×+2×+…+k×+…+n×.
又∵,
∴++…++…+.
故若ξ~B(n,p),则np.
三、讲解范例:
例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望
解:因为,
所以
例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~B(20,0.9),,
由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:
例3.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:
方案1:运走设备,搬运费为3800元.
方案2:建保护围墙,建设费为2000元.但围墙只能防小洪水.
方案3:不采取措施,希望不发生洪水.
试比较哪一种方案好.
解:用X1、X2和X3分别表示三种方案的损失.
采用第1种方案,无论有无洪水,都损失3800元,即
X1=3800.
采用第2种方案,遇到大洪水时,损失2000+60000=62000元;没有大洪水时,损失2000元,即
同样,采用第3种方案,有
于是,
EX1=3800,
EX2=62000×P(X2=62000)+200000×P(X2=2000)
=62000×0.01+2000×(1-0.01)=2600,
EX3=60000×P(X3=60000)+10000×P(X3=10000)+0×P(X3=0)
=60000×0.01+10000×0.25=3100.
采取方案2的平均损失最小,所以可以选择方案2.
值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案2将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.
例4.随机抛掷一枚骰子,求所得骰子点数的期望
解:∵,
=3.5
例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)
解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:
(=1,2,…,10)
需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:
12345678910
0.150.12750.10840.0920.07830.06660.05660.04810.04090.2316
根据以上的概率分布,可得的期望
例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.
解:抛掷骰子所得点数ξ的概率分布为
ξ123456

所以
1×+2×+3×+4×+5×+6×
=(1+2+3+4+5+6)×=3.5.
抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.
例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η
(Ⅰ)求租车费η关于行车路程ξ的关系式;
(Ⅱ)若随机变量ξ的分布列为
ξ15161718
P0.10.50.30.1
求所收租车费η的数学期望.
(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
解:(Ⅰ)依题意得η=2(ξ-4)十10,即η=2ξ+2;
(Ⅱ)
∵η=2ξ+2
∴2Eξ+2=34.8(元)
故所收租车费η的数学期望为34.8元.
(Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15
所以出租车在途中因故停车累计最多15分钟
四、课堂练习:
1.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则()
A.4;B.5;C.4.5;D.4.75
答案:C
2.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
⑴他罚球1次的得分ξ的数学期望;
⑵他罚球2次的得分η的数学期望;
⑶他罚球3次的得分ξ的数学期望.
解:⑴因为,,所以
1×+0×
⑵η的概率分布为
η012
P

所以0×+1×+2×=1.4.
⑶ξ的概率分布为
ξ0123
P

所以0×+1×+2×=2.1.
3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.
分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.
解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.
∴P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n).
∴ξ~B(n,),故Eξ=n×=
五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ+b)=aEξ+b,以及服从二项分布的随机变量的期望Eξ=np
六、课后作业:P64-65练习1,2,3,4P69A组1,2,3
1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)
解:令取取黄球个数(=0、1、2)则的要布列为
012
p

于是E()=0×+1×+2×=0.8
故知红球个数的数学期望为1.2
2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数
①求的概率分布列
②求的数学期望
解:①依题意的取值为0、1、2、3、4
=0时,取2黑p(=0)=
=1时,取1黑1白p(=1)=
=2时,取2白或1红1黑p(=2)=+
=3时,取1白1红,概率p(=3)=
=4时,取2红,概率p(=4)=
01234
p

∴分布列为

(2)期望E=0×+1×+2×+3×+4×=
3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望
解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3)
表示第i台仪器不出现故障,则:
p(=1)=p(A1)+p(A2)+p(A3)
=p1(1-p2)(1-p3)+p2(1-p1)(1-p3)+p3(1-p1)(1-p2)
=p1+p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3
p(=2)=p(A1A2)+p(A1)+p(A2A3)
=p1p2(1-p3)+p1p3(1-p2)+p2p3(1-p1)
=p1p2+p1p3+p2p3-3p1p2p3
p(=3)=p(A1A2A3)=p1p2p3
∴=1×p(=1)+2×p(=2)+3×p(=3)=p1+p2+p3
注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望
4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是1.2
解:从5个球中同时取出2个球,出现红球的分布列为
012

5.、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:
对阵队员A队队员胜的概率B队队员胜的概率
A1对B1

A2对B2

A3对B3

现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,
(1)求,的概率分布;(2)求,
解:(Ⅰ),的可能取值分别为3,2,1,0
根据题意知,所以
(Ⅱ);
因为,所以
七、板书设计(略)
八、教学反思:
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ公式E(aξ+b)=aEξ+b,以及服从二项分布的随机变量的期望Eξ=np。

离散型随机变量的期望说案


一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

2012届高考数学备考复习概率、随机变量及其分布列教案


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2012届高考数学备考复习概率、随机变量及其分布列教案”,仅供参考,希望能为您提供参考!

专题六:概率与统计、推理与证明、算法初步、复数
第二讲概率、随机变量及其分布列
【最新考纲透析】
1.概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
(2)了解两个互斥事件的概率加法公式。
(3)理解古典概型及其概率计算公式。
(4)了解几何概型的意义。
(5)了解条件概率。
2.两个事件相互独立,n次独立重复试验
(1)了解两个事件相互独立的概念;
(2)理解n次独立重复试验的模型并能解决一些实际问题;
3.离散型随机变量及其分布列
(1)理解取有限个值的离散随机变量及其分布列的概念。
(2)理解二项分布,并解决一些简单问题。
4.离散型随机变量的均值、方差
(1)理解取有限个值的离散型随机变量的均值、方差的概念;
(2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

【核心要点突破】
要点考向1:古典概型
考情聚焦:1.古典概型是高考重点考查的概率模型,常与计数原理、排列组合结合起来考查。
2.多以选择题、填空题的形式考查,属容易题。
考向链接:1.有关古典模型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常常用到计数原理与排列、组合的相关知识。
2.在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性。
3.对于较复杂的题目,要注意正确分类,分类时应不重不漏。
例1:(2010北京高考文科T3)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则ba的概率是()
(A)(B)(C)(D)
【命题立意】本题考查古典概型,熟练掌握求古典概型概率的常用方法是解决本题的关键。
【思路点拨】先求出基本事件空间包含的基本事件总数,再求出事件“”包含的基本事件数,从而。
【规范解答】选D。,包含的基本事件总数。事件“”为,包含的基本事件数为。其概率。
【方法技巧】列古典概型的基本事件空间常用的方法有:(1)列举法;(2)坐标网格法;(3)树图等。
要点考向2:几何概型
考情聚焦:1.几何模型是新课标新增内容,预计今后会成为新课标高考的增长点,应引起高度重视。
2.易与解析几何、定积分等几何知识交汇命题,多以选择题、填空题的形式出现,属中、低档题目。
考向链接:1.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解。
2.利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。
例2:(2010湖南高考文科T11)在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为。
【命题立意】以非常简单的区间立意,运算不复杂,但能切中考查几何概型的要害。
【思路点拨】一元几何概型→长度之比
【规范解答】[-1,2]的长度为3,[0,1]的长度为1,所以概率是.
【方法技巧】一元几何概型→长度之比,二元几何概型→面积之比,三元几何概型→体积之比
要点考向3:条件概率
考情聚焦:1.条件概率是新课标新增内容,在2007年山东高考重点亮相过,预计在今后课改省份高考中会成为亮点。
2.常出现在解答题中和其他知识一同考查,当然也会在选择题、填空题中单独考查。
考向链接:(1)利用公式是求条件概率最基本的方法,这种方法的关键是分别求出P(A)和P(AB),其中P(AB)是指事件A和B同时发生的概率。
(2)在求P(AB)时,要判断事件A与事件B之间的关系,以便采用不同的方法求P(AB)。其中,若,则P(AB)=P(B),从而
例3:(2010安徽高考理科T15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。
①;
②;
③事件与事件相互独立;
④是两两互斥的事件;
⑤的值不能确定,因为它与中哪一个发生有关。
【命题立意】本题主要考查概率的综合问题,考查考生对事件关系的理解和条件概率的认知水平.
【思路点拨】根据事件互斥、事件相互独立的概念,条件概率及把事件B的概率转化为可辨析此题。
【规范解答】显然是两两互斥的事件,
有,,,


且,,有
可以判定②④正确,而①③⑤错误。
【答案】②④
要点考向4:复杂事件的概率与随机变量的分布列、期望、方差
考情聚焦:1.复杂事件的概率与随机变量的分布列、期望、方差是每年高考必考的内容,与生活实践联系密切。
2.多以解答题的形式呈现,属中档题。
例4:(2010湖南高考理科T4)
图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图
(Ⅰ)求直方图中x的值
(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望。
【命题立意】以实际生活为背景,考查频率分布直方图的认识,进而考查分布列和期望等统计知识.
【思路点拨】频率分布直方图→矩形的面积表示频率反映概率;随机抽取3位居民(看作有放回的抽样)是三个独立重复实验→计算概率时遵循贝努力概型.
【规范解答】(1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知,X~B(3,0.1).
因此P(x=0)=P(X=1)=
P(X=2)=P(X=3)=
故随机变量X的分布列为
X0123
P0.7290.2430.0270.001
X的数学期望为EX=3×0.1=0.3.
【方法技巧】1、统计的常用图:条形图,径叶图;直方图,折线图等。要学会识图.2、概率问题的解题步骤:首先思考实验的个数、实验关系和实验结果,然后思考目标时间如何用基本事件表示出来,最后利用对立事件、对立事件和互斥事件进行运算.3、在求期望和方差时注意使用公式.
注:(1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解。
(2)一个复杂事件若正面情况比较多,反而情况较少,则一般利用对立事件进行求解。对于“至少”,“至多”等问题往往用这种方法求解。
(3)求离散型随机变量的分布列的关键是正确理解随机变量取每一个所表示的具体事件,然后综合应用各类求概率的公式,求出概率。
(4)求随机变量的均值和方差的关键是正确求出随机变量的分布列,若随机变量服从二项分布,则可直接使用公式求解。

【高考真题探究】
1.(2010辽宁高考理科T3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()
(A)(B)(C)(D)
【命题立意】本题考查独立事件同时发生的概率,
【思路点拨】恰有一个一等品,包含两类情况,
【规范解答】选B.所求概率为。
【方法技巧】1、要准确理解恰有一个产含义,
2、事件A、B相互独立,则P(AB)=P(A)P(B)
3、本题也可用对立事件的概率来解决。所求概率p=1-.

2.(2010福建高考理科T13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于。
【命题立意】本题主要考查相互独立事件同时发生的概率的求解。
【思路点拨】分析题意可得:该选手第一个问题可以答对也可以答错,第二个问题一定回答错误,第三、四个问题一定答对,进而求解“相互独立事件同时发生的概率”。
【规范解答】依题意得:该选手第一个问题可以答对也可以答错,第二个问题一定回答错误,第三、四个问题一定答对,所以其概率.

3.(2010江苏高考T3)盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是___.
【命题立意】本题考查古典概型的概率求法。
【思路点拨】先求出从盒子中随机地摸出两只球的所有方法数,再求出所摸两只球颜色不同的方法数,最后代入公式计算即可。
【规范解答】从盒子中随机地摸出两只球,共有种情况,而摸两只球颜色不同的种数为种情况,故所求的概率为
【答案】

4.(2010湖北高考文科T13)一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).
【命题立意】本题主要考查独立重复试验及互斥事件的概率,考查考生的分类讨论思想和运算求解能力.
【思路点拨】“4个病人服用某种新药”相当于做4次独立重复试验,“至少3人被治愈”即“3人被治愈”,“4人被治愈”两个互斥事件有一个要发生,由独立重复试验和概率的加法公式即可得出答案.
【规范解答】4个病人服用某种新药3人被治愈的概率为:;
4个病人服用某种新药4人被治愈的概率为:,故服用这种新药的4个
病人中至少3人被治愈的概率为.
【答案】0.9477.
【方法技巧】求多个事件至少有一个要发生的概率一般有两种办法:1、将该事件分解为若干个互斥事件的“和事件”,然后利用概率的加法公式求解;2、考虑对立事件。如:本题也可另解为

5.(2010重庆高考文科T14)加工某一零件经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为.
【命题立意】本小题考查概率、相互独立试验等基础知识,考查运算求解能力,考查分类讨论的思想.
【思路点拨】加工零件需要完成三道工序,考虑问题的对立事件,加工出合格零件则需要三道工序都是合格品.
【规范解答】因为第一、二、三道工序的次品率分别为、、,所以第一、二、三道工序的正品率分别为,所以加工出来的零件的次品率为
【答案】.
【方法技巧】当所求事件的情形较多时,它的对立事件的情形较少,采用对立事件求解就是“正难则反易”的方法.

6.(2010重庆高考文科T17)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:
(1)甲、乙两单位的演出序号均为偶数的概率;
(2)甲、乙两单位的演出序号不相邻的概率.
【命题立意】本小题考查排列、组合、古典概型的基础知识及其综合应用,考查运算求解能力,及分类讨论的数学思想.
【思路点拨】先求出事件的总的基本事件的个数,再求出符合题意要求的基本事件的个数,最后计算概率.
【规范解答】(方法一)考虑甲乙两个单位的排列顺序,甲乙两个单位可以排列在6个位置中的任意两个位置,有种等可能的结果;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是,
所以
(方法二)不考虑甲乙两个单位的排列顺序,甲乙两个单位可以在6个位置中的任选两个位置,有种等可能的结果;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是5,所以.
(方法三)考虑所有单位的排列位置,各单位的演出顺序共有(种)情形;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是,
所以.

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()
(A)(B)(C)(D)
2.已知函数、都是定义在上的函数,且(且),,在有穷数列()中,任意取正整数,则其前项和大于的概率是()
A.B.C.D.
3.先后抛掷两枚均匀的正方体骰子,记骰子落地后朝上的点数分别为x、y,则的概率为()A.B.C.D.
4.一个容量为100的样本,其数据的分组与各组的频数如下表:
组别

频数1213241516137
则样本数据落在上的频率为
A.0.13B.0.39C.0.52D.0.64
5.(2010届安徽省合肥高三四模(理))从足够多的四种颜色的灯泡中任选六个安置在如右图的6个顶点处,则相邻顶点处灯泡颜色不同的概率为()
A.B.C.D.
6.(2010届杭州五中高三下5月模拟(理))将一枚骰子抛掷两次,若先后出现的点数分别为,则方程有实根的概率为()
A.B.C.D.

二、填空题(每小题6分,共18分)
7.某班有36名同学参加数学、物理、化学课外兴趣小组,每名同至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.
8.从5名世博志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有种.
9.已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一个元素p,则p∈B的概率是_______.

三、解答题(10、11题每题15分,12题16分,共46分)

10.一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸出两个球,两个球颜色不同则为中奖.
(1)试用n表示一次摸奖中奖的概率P;
(2)若n=5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(3)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率记为P3(1),当n取多少时,P3(1)值最大?

11.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重克,这些球等可能地从袋里取出(不受重量、号码的影响)。
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率。

12.大量统计数据表明,某班一周内(周六、周日休息)各天语文、数学、外语三科有作业的概率如下表:
根据上表:(I)求周五没有语文、数学、外语三科作业的概率;
(II)设一周内有数学作业的天数为,求随机变量的分布列和数学期望。
参考答案
1.C
2.C
3.C
4.C
5.C
6.C
7.8
8.48
9.【解析】集合A中共有25个元素,既属于集合A又属于集合B的元素为(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共6个,故所求概率为P=.
答案:

11.解析:(1)由题意,任意取出1球,共有6种等可能的方法。
由不等式
所以,于是所求概率为
(2)从6个球中任意取出2个球,共有15种等可能的方法,列举如下:
(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)
(3,6)(4,5)(4,6)(5,6)
设第n号与第m号的两个球的重量相等,
则有
故所求概率为

12.解析:(I)设周五有语文、数学、外语三科作业分别为事件A1、A2、A3周五没有语文、数学、外语三科作业为事件A,则由已知表格得
、、
(II)设一周内有数学作业的天数为,则
所以随机变量的概率分布列如下:
3.若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率为_______.
【解析】展开式共有11项,其中第1,3,9,11项系数为奇数,故所求概率为P=.
答案:
4.平面区域U={(x,y)|x+y≤6,x≥0,y≥0},M={(x,y)|x≤4,y≥0,x-2y≥0},若向区域U内随机投一点P,则点P落入区域M的概率为________.
【解析】本题考查了线性规划知识及几何概型求概率等知识.如图,作出两集合表示的平面区域,
容易得出U所表示的平面区域为三
角形AOB及其边界,M表示的区域
为三角形OCD及其边界.
容易求得D(4,2)恰为直线x=4,
x-2y=0,x+y=6的交点.
6.一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收,抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(1)求这箱产品被用户接收的概率;
(2)记抽检的产品件数为ξ,求ξ的分布列和数学期望.
7.袋中装有标号分别为1,2,3,4,5,6的卡片各1张,从中任取两张卡片,其标号分别记为x,y(其中x>y).
(1)求这两张卡片的标号之和为偶数的概率;
(2)设ξ=x-y,求随机变量ξ的概率分布列与数学期望.

文章来源:http://m.jab88.com/j/37711.html

更多

猜你喜欢

更多

最新更新

更多