88教案网

2020高一数学上册函数必背知识点梳理(函数单调性与最值)

俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师营造一个良好的教学氛围。您知道高中教案应该要怎么下笔吗?以下是小编为大家精心整理的“2020高一数学上册函数必背知识点梳理(函数单调性与最值)”,供大家借鉴和使用,希望大家分享!

2020高一数学上册函数必背知识点梳理(函数单调性与最值)

一、增函数

1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
人教版高一数学必修一第二章函数单调性与最值知识点

2、从上面的观察分析,能得出什么结论?
不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数的单调性。

3.增函数的概念

一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
注意:
①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质
②必须是对于区间D内的任意两个自变量x1,x2;当x1

二、函数的单调性
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

【判断函数单调性的常用方法】
1、根据函数图象说明函数的单调性.例1、如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
人教版高一数学必修一第二章函数单调性与最值知识点
常见考点考法

下图是借助计算机作出函数y=-x2+2|x|+3的图象,请指出它的的单调区间。

人教版高一数学必修一第二章函数单调性与最值知识点
2.利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
人教版高一数学必修一第二章函数单调性与最值知识点

为大家带来了人教版高一数学必修一第二章函数单调性与最值知识点,希望大家能够熟记这些数学知识点。

精选阅读

高一数学上册函数必背知识点梳理(北师大版)


高一数学上册函数必背知识点梳理(北师大版)

1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略
3、恒成立问题的求解策略
4、反函数的几种题型及方法
5、二次函数根的问题——一题多解
指数函数y=a^x
a^a*a^b=a^a+b(a0,a、b属于Q)
(a^a)^b=a^ab(a0,a、b属于Q)
(ab)^a=a^a*b^a(a0,a、b属于Q)
指数函数对称规律:
1、函数y=a^x与y=a^-x关于y轴对称
2、函数y=a^x与y=-a^x关于x轴对称
3、函数y=a^x与y=-a^-x关于坐标原点对称
幂函数y=x^a(a属于R)
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

2016年高一数学上册函数必背知识点梳理北师大版


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师缓解教学的压力,提高教学质量。高中教案的内容要写些什么更好呢?以下是小编为大家精心整理的“2016年高一数学上册函数必背知识点梳理北师大版”,但愿对您的学习工作带来帮助。

2016年高一数学上册函数必背知识点梳理北师大版

高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高一数学知识点,下面xx教育网为大家带来北师大版高一数学上册期中必考知识点:函数,希望对大家掌握数学知识有所帮助。
(一)、映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.
注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.
②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
(二)、函数的解析式与定义域
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.
(三)、函数的值域与最值
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
(四)、函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数.
(五)、函数的单调性
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1x2时,都有不等式f(x1)(或)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.
对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数.
②在[a、b]上是增函数.
在[a、b]上是减函数.
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.
6、证明函数的单调性的方法
(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或)f(x2);③根据定义,得出结论.
(2)设函数y=f(x)在某区间内可导.
如果f′(x)0,则f(x)为增函数;如果f′(x)0,则f(x)为减函数.
(六)、函数的图象
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b0)
沿y轴向平移b个单位
y=f(x±a)(a0)
沿x轴向平移a个单位
y=-f(x)
作关于x轴的对称图形
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f-1(x)
作关于直线y=x的对称图形
y=f(ax)(a0)
横坐标缩短到原来的,纵坐标不变
y=af(x)
纵坐标伸长到原来的|a|倍,横坐标不变
y=f(-x)
作关于y轴对称的图形
【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
①求证:f(0)=1;
②求证:y=f(x)是偶函数;
③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.
思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.
解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.
②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.
③分别用(c0)替换x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函数,2c就是它的一个周期。

人教版高一数学《函数单调性的运用》教案


经验告诉我们,成功是留给有准备的人。作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,减轻高中教师们在教学时的教学压力。怎么才能让高中教案写的更加全面呢?小编收集并整理了“人教版高一数学《函数单调性的运用》教案”,仅供参考,欢迎大家阅读。

人教版高一数学《函数单调性的运用》教案

函数单调性的运用
体验回顾:
1.函数满足对任意定义域中的x1,x2成立,则实数a的取值范围是_______________;
2.设函数,若对于任意,
不等式恒成立,则实数的取值范围是.
经典训练:
【题型一】解抽象函数不等式问题
例1:定义在实数集上的偶函数在区间上是单调增函数,若,则的取值范围是______.

练习:设是定义在(上的增函数,且满足.若,且,求实数的取值范围.
练习:函数是定义在上的奇函数,且为增函数,若,求实数a的范围。
练习;设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是.
解析:因为且,所以,又,所以,再由可知,.又因为是定义在上的增函数,从而有,解得:.故所求实数的取值范围为.
解:定义域是即

是奇函数
在上是增函数即
解之得故a的取值范围是

【题型二】数列中的单调性
例2:数列的通项,为了使不等式对任意恒成立的充要条件.
解:∵,
则,
欲使得题设中的不等式对任意恒成立,
只须的最小项即可,
又因为,
即只须且,
解得,
即,解得实数应满足的关系为且.
练习:数列满足:,记,若对任意的恒成立,则正整数的最小值为。10;
易得:,令,而
,为减数列,
所以:,而为正整数,所以

练习:设函数数列的通项.满足
(1).求数列的通项公式.
(2).数列有没有最小项.

课后作业:
1.定义在,且,若不等式对任意恒成立,则实数a的取值范围
解:依题设,且,则
则()
所以,即,从而函数在单调递减
所以不等式
即恒成立,又,从而,从而,又,所以,从而实数a的取值范围为
2.已知,t是大于0的常数,且函数的最小值为9,则t的值为.4
3.已知数列是由正数组成的等差数列,是其前项的和,并且.
(1)求数列的通项公式;
(2)求使不等式对一切均成立的最大实数;
(3)对每一个,在与之间插入个,得到新数列,设是数列的前项和,试问是否存在正整数,使?若存在求出的值;若不存在,请说明理由.
解:(1)设的公差为,由题意,且

数列的通项公式为
(2)由题意对均成立



∴,∴随增大而增大
∴的最小值为
∴,即的最大值为
(3)
∴在数列中,及其前面所有项之和为
,即
又在数列中的项数为:
且,
所以存在正整数使得

人教版高一数学《函数的单调性判断》教案


人教版高一数学《函数的单调性判断》教案

概念反思:
1.数学是一种工具:通过它可以很好的分析和解决问题。数学总是在不断的发明创造中去解决所遇到的问题。
2.为了研究自然界中量与量之间的变化关系发明了函数…….同样为了进一步研究函数值的增减变化情况发明了单调性的概念……导数概念的发明使我们对函数性质的了解在单调性的基础上又更深入一步……增减变化的快慢.(图像的陡峭程度问题被数量化)
概念回顾:
函数单调性的定义
方法梳理:
1.函数单调性的判断及运用:
①观察法:同增异减.
②导数法:在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
③图像法:变换
④用定义来判断函数的单调性.
对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)<f(x2),那么函数f(x)就是区间I上的增函数.
对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)>f(x2),那么函数f(x)就是区间I上的减函数.
在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.
体验回顾:
1.下列说法正确的是.
1)定义在R上的函数满足,则为R上的单调增函数
2)定义在R上的函数在上是单调增函数,在上是单调增函数,则为R上的单调增函数
3)定义在R上的函数在上是单调减函数,在上是单调减函数,则为R上的单调减函数
4)定义在R上的函数满足,则为R上不是单调减函数
2.求下列函数的单调区间.
①.;②.
3.函数的单调减区间是.
4.函数,单调区间.
5.函数的最小值是.
经典探究:
例:已知函数,对于上的任意,有如下条件:①;②;③.其中是的充分条件是(将充分条件的序号都填上)___________..②,③

变式:已知函数与的定义域都是,值域分别是与,在上是增函数而是减函数,求证分:在上为减函数.
变式:函数在区间上是单调函数,求实数的取值范围。

解:设且,则
而在上是单调函数,在上恒正或恒负。
又,由知只有符合题意,
时,在上单减
变式:若函数f(x)=4xx2+1在区间(m,2m+1)上是单调递增函数,则m∈__________.
解析∵f′(x)=4(1-x2)(x2+1)2,令f′(x)0,得-1x1,
∴f(x)的增区间为(-1,1).
又∵f(x)在(m,2m+1)上单调递增,
∴m≥-1,2m+1≤1,∴-1≤m≤0.
∵区间(m,2m+1)中2m+1m,∴m-1.
综上,-1m≤0.
答案(-1,0]
例:2三个同学对问题“关于的不等式在上恒成立,求实数的范围”提出各自的解题思路:
甲说:只需不等式左边最小值不小于右边最大值。
乙说:把不等式变形为左边含变量的函数,右边仅含常数,求函数最值。
丙说:把不等式两边看成关于的函数,作出函数的图像。
参考上述解题思路,你认为他们所讨论的问题的正确结论,即的范围是
参考答案:解析一:两边同除以,则
当且仅当,两等式同时成立,所以时,右边取最小值10,
解析二:根据填空题特点,可用数值代入,推算值
设,将上函数值列表如下:
1234567891011
3020.517.5314.251016.1724.5735.1347.7862.579.27
可推算时,取最小值10,
解析三:
当,
故时,取最小值10,。(此法需用结论)
命题意图与思路点拨:本题作为填空有效考查了学生探究能力与运算变换能力,以学生交流给出的语言作为解题参考,削减难度,探讨不等式恒成立的可能途径,充分考查学生利用函数思想处理恒成立不等式问题能力,题型别致。要重视变量分离方法在解题中的作用。
变式:当时,函数的最小值为8

变式:关于的不等式在上恒成立,则实数的范围为______

变式:
变式:设,则函数(的最小值是.
课后拓展:
1.下列说法正确的有(填序号)
①若,当时,,则在I上是增函数.
②函数在R上是增函数.
③函数在定义域上是增函数.
④的单调区间是.
2.若函数的零点,,则所有满足条件的的和为?
3.已知函数(为实常数).
(1)若,求的单调区间;
(2)若,设在区间的最小值为,求的表达式;
(3)设,若函数在区间上是增函数,求实数的取值范围.
解析:(1)2分
∴的单调增区间为(),(-,0),的单调减区间为(-),()
(2)由于,当∈[1,2]时,
10即
20即
30即时
综上可得
(3)在区间[1,2]上任取、,且

(*)
∵∴
∴(*)可转化为对任意、

10当
20由得解得
30得
所以实数的取值范围是

文章来源:http://m.jab88.com/j/5734.html

更多

最新更新

更多