88教案网

《解一元一次方程(二)——去括号》教学反思

教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“《解一元一次方程(二)——去括号》教学反思”,相信能对大家有所帮助。

《解一元一次方程(二)——去括号》教学反思

本节课是《一元一次方程》的第三节的教学内容。解含有括号的一元一次方程既是本章的重点内容也是今后学习其他方程、不等式及函数的基础。前面学生已学习了合并同类项、移项以及整式的计算中的去括号等内容,会解“ax+b=cx+d”类型的一元一次方程,本节通过去括号为解方程起承上启下作用,但去括号时,学生容易弄错,是本章的重点,初步解决实际问题是本章的难点。m.jab88.CoM

在进行本节课的教学中,我利用导学案引导学生做去括号的练习题,回顾去括号及规律,再试着去做含有括号的方程,让学生体会含有括号的方程在去括号时,与以前学的去括号的规律相同,解方程的过程也与前面学的相近,只不过多了去括号的这一步。我利用变式训强化训练,同时让学生初步感受利用方程解决实际问题。

本节课的教学中还存在一下几点不足之处:

1.语言衔接不够顺畅。

2.教师亲和力不够,不能充分调动学生的热情,课堂气氛不够活跃。

3.不能及时表扬和鼓励学生。

4.应用题的处理不够简洁。

在今后的教学中,我将努力改进自己的不足,力争取得更大的进步。

相关知识

3.3解一元一次方程(二)——去分母(说课稿)


教案课件是老师上课做的提前准备,大家开始动笔写自己的教案课件了。只有制定教案课件工作计划,接下来的工作才会更顺利!适合教案课件的范文有多少呢?以下是小编收集整理的“3.3解一元一次方程(二)——去分母(说课稿)”,供大家借鉴和使用,希望大家分享!

3.3解一元一次方程(二)——去分母(说课稿)

一、说教材

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。

1、教学目标

(1)、知识目标:1、掌握解一元一次方程中去分母的方法,并能解这种类型的方程·

2、了解一元一次方程解法的一般步骤·

(2)、能力目标:经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力,

(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

2、通过埃及古题的情境感受数学文明.

2、教学重点:通过去分母解一元一次方程

3、教学难点:探究通过去分母的方法解一元一次方程

二、说教法:

在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。3、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

三、说学法

教学活动流程图活动内容和目的

活动1列方程解决实际问题创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·

活动2解含有分母的一元一次方程以学生已有的关于等式性质的数学知识基础,探索利用“去分母的方法解一元一次方程·

活动3去分母的方法解一元一次方程用去分母的方法解一元一次方程,掌握去分母的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·

活动4小结总结本节收获

活动1、创设问题情境:

引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题·

问题一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。

(1)能不能用方程解决这个问题?

(2)能尝试解这个方程吗?(3)不同的解法有什么各自的特点?

设计意图:1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识·

2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是去分母这一步骤的必要性;同时,让学生认同去分母是科学的、可行的,明确为什么能去分母·这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现方程两边同时乘以所有分母的最小公倍数这一方法·也首次由学生自行突破了难点。

3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力·

活动2

下面方程可以怎样求解?

观察方程,回答教师提出的问题并对学生的回答进行总结:先去分母·

怎样去分母?

解去掉分母后的这个方程

归纳总结去分母的方法:在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即等式两边同时乘同一个数,结果仍相等·

呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点·巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。

通过对错例的辨析,加深学生对去分母的认识,避免解方程时出现类似错误·

去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把

新问题想办法合理转化为熟悉的知识,问题就能得以解决通过在解方程过程中去分母这一步骤体会转化思想·

活动3解方程

设计意图:用实践来加深对去分母的方法解一元一次方程的认识·结合本题思考,能总结解这种方程的一般操作过程吗?

巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬

套,每个步骤要不要使用、何时使用都应视方程的特征而定·了解对方程的每一次变形都是为了将方程最终化归为的形式·解题时应根据题目特点,合理选择解题步骤·

小结

活动4总结

(1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法;

(2)学生是否掌握了一元一次方程解法的一般步骤;

(3)学生是否能准确表达自己的观点·

最后复习、巩固本节的知识,学会总结反思·

四.评价分析

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。

解一元一次方程(1)


老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“解一元一次方程(1)”,仅供您在工作和学习中参考。

课题

解一元一次方程(1)

课型

新授课

教学目标

1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.2.经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式.3.强调检验的重要性,养成检验反思的好习惯.

教学重点

归纳等式的性质;利用性质解方程.

教学难点

比较方程的解和解方程的异同;

教具准备

天平,砝码,物体

教学过程

教学内容

教师活动内容、方式

学生活动方式

设计意图

一.创设情境,引入新课:

1.做一做:填表:

x

1

2

3

4

5

2x+1

2.根据表格回答问题:

(1)当x=时,方程2x+1=5两边相等。

(2)你知道能使方程2x+1=5两边相等的x是多少吗?

我们把能使方程左右两边相等的未知数的值叫做方程的解,如x=5是方程2x+1=5的解,求方程的解的过程叫做解方程。求方程2x+1=5中x=5的过程就是解方程

3.试一试:分别把0、1、2、3、4代入方程,哪个值能使方程两边相等。

(1)2x-1=5(2)3x-2=4x-3

你知道方程2x-1=5和3x-2=4x-3吗?

4.那么我们怎样求方程的解呢?引入课题。

二.自主探究,合作讨论:.

1.用天平做演示实验,让学生探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,

2.由实验联想到等式的几种变形.

学生填表

学生练习巩固方程的解的概念

采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念.通过实验提高学生的感性认识

教师活动内容、方式

学生活动方式

设计意图⑴2x+1=5→2x=5-1,3x=3+2x→3x-2x=3;

⑵2x=4→x=4÷2.,=2→x=2×3

3.学生归纳等式的性质:

性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;

性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式.

三.数学运用:

1..出示例1在括号内填上适当的数或整式,使所得结果仍是等式。

⑴如果3x=-x+4,那么3x+()=4

⑵如果x-1=x,那么()(x-1)=x

2.思考:比较方程的解和解方程的异同?

(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式)

出示例2.解下列方程:(1)x+5=2;(2)-2x=4.

引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据,交流解题方法.教师提供正确的解题格式.强调检验方法及检验的必要性.

3.思维拓展:

课本P96练一练2.

四.巩固与练习:课本P96练一练1。

五.回顾反思:

(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.

(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.

(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.

五.作业(见作业纸)逐步引导启发学生归纳等式的性质

学生说出变形的依据

交流解题方法.

师生共同小结

等式的性质比较抽象,教学时不必在理论上作过多的展开,

3.3解一元一次方程


每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“3.3解一元一次方程”但愿对您的学习工作带来帮助。

3.3解一元一次方程

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业P102:3,10.

文章来源:http://m.jab88.com/j/25621.html

更多

最新更新

更多