88教案网

2.4二次函数y=ax2+bx+c的图象

作为老师的任务写教案课件是少不了的,大家在用心的考虑自己的教案课件。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“2.4二次函数y=ax2+bx+c的图象”,欢迎您参考,希望对您有所助益!jAB88.COM

2.4二次函数y=ax2+bx+c的图象
本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
2.4二次函数y=ax2+bx+c的图象(一)
教学目标
(一)教学知识点
1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.
2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
教学方法
探索——比较——总结法.
教具准备
投影片四张
第一张:(记作§2.4.1A)
第二张:(记作§2.4.1B)
第三张:(记作§2.4.1C)
第四张:(记作§2.4.1D)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数y=3x2与y=3(X-1)2的图象的性质.
投影片:(§2.4A)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
X-3-2-101234
3x2
3(x-1)2
(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?
(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27.
(2)用描点法作出y=3(x-1)2的图象,如上图.
(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?
[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b.都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.
不同点:
a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.
b.它们的位置不问.
c.它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),
联系:
把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.
二、做一做
投影片:(§2.4.1B)
在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b.都足轴对称图形,对称轴都为x=1.
c.在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b.它们的位置不同.
联系:
把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.
三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?
[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(§2.4.1C)
一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.
(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.
(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.
下面大家经过讨论之后,填写下表:
y=a(x-h)2+k开口方向对称轴顶点坐标
a>0
a<0
四、议一议
投影片:(§2,4.1D)
(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.
(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数y=(x+2)2-1与y=(x-1)2+2的图象是由函数y=x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:y=(x+2)2-1的图象是由y=x2的图象向左平移2个单位,再向下平移1个单位得到的,y=(x-1)2+2的图象是由y=x2的图象向右平移1个单位,再向上平移2个单位得到的.
y=(x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y=(x-1)2+2的图象.
y=(x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y=(x+2)2-1的图象.
板书设计
§4.2.1二次函数y=ax2+bx+c的图象(一)一、1.比较函数y=3x2与y=3(x-1)2的
图象和性质(投影片§2.4.1A)
2.做一做(投影片§2.4.1B)
3.总结函数y=3x2,y=3(x-1)2y=3(x-1)2+2的图象之间的关系(投影片§2.4.1C)
4.议一议(投影片§2.4.1D)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数y=-x2,y=-x2-1,y=-(x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
y=-x2的图象向下移动1个单位得到y=-x2-1的图象;y=-x2的图象向左移动1个单位,向下移动1个单位,得到y=-(x+1)2-1的图象.

扩展阅读

二次函数y=ax2+bx+c的图象与字母系数的关系第2课时学案


第2课时二次函数y=ax2+bx+c的图象与字母系数的关系
出示目标
1.熟练掌握函数与方程的综合应用.
2.能利用函数知识解决一些简单的实际问题.
合作探究1
活动1小组讨论
例1将抛物线y=x2+2x-4向左平移2个单位,又向上平移3个单位,最后绕顶点旋转
180°.
①求变换后新抛物线对应的函数解析式;
②若这个新抛物线的顶点横纵坐标恰为x的整系数方程x2-(4m+n)x+3m2-2n=0的两根,求m、n的值.
解:①y=x2+2x-4=(x+1)2-5.由题意,可得平移旋转后抛物线的解析式为y=-x2-6x-11.
②该抛物线顶点坐标为(-3,-2).
设方程两根为x1,x2,则有x1+x2=4m+n=-5,x1x2=3m2-2n=6.即解得或
熟练运用二次函数平移规律解决问题,二次函数与一元二次方程的转化,以及一元二次方程根与系数的关系也是解决问题的常用之法.
活动2跟踪训练(独立完成后展示学习成果)
1.二次函数y=ax2+bx+c的部分对应值如下表所示,二次函数y=ax2+bx+c的图象的对称轴为直线x=1,当x=2时,对应的函数值y=-8.
x…-3-20135…
y…70-8-9-57…

2.若二次函数y=-x2+2x+k的部分图象如图,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=-1.
可根据抛物线的对称性.
3.函数y=(x-2)(3-x)取得最大值时,x=.
先化成顶点式,再确定其最大值.
4.二次函数y=x2-8x+15的图象与x轴交于A、B两点,点C在该函数图象上运动,若S△ABC=2,求点C的坐标.
解:C1(4+,2)或C2(4-,2).
合作探究2
活动1小组讨论
例2如图Rt△AOB的两直角边OA,OB的长分别是1和3,将△AOB绕点O按逆时针方向旋转90°,至△DOC的位置.
①求过C、B、A三点的二次函数的解析式;
②若①中抛物线的顶点是M,判定△MDC的形状,并说明理由.
解:①由题可得A(1,0)、B(0,3)、C(-3,0).设抛物线解析式为y=a(x+3)(x-1),将B(0,3)代入解得a=-1.∴y=-(x+3)(x-1).即y=-x2-2x+3;
②△MDC为等腰直角三角形.
理由:过点M作MN⊥y轴于点N,由①求得点M坐标为(-1,4),∵OD=OA=1,∴MN=OD=1,ND=OC=3.∴Rt△MDN≌Rt△DCO.∴MD=CD,∠MDN=∠DCO∵∠DCO+
∠CDO=90°,∴∠MDN+∠CDO=90°.即∠MDC=90°.∴△MDC是等腰直角三角形.
有旋转就要联想到全等形,就有相等的角和线段.
活动2跟踪训练(小组内讨论解题思路)
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.
解:(1)A(-1,0)、B(3,0)、C(0,3),对称轴为直线x=1;
(2)①PF=-m2+3m;当m=2时,四边形PEDF为平行四边形;②S=-m2+m.
活动3课堂小结
学生试述:这节课你学到了些什么?
当堂训练
教学至此,敬请使用学案当堂训练部分.

二次函数y=ax2的图象和性质学案


22.1.2二次函数y=ax2的图象和性质
出示目标
1.能够用描点法作出函数y=ax2的图象,并能根据图象认识和理解其性质.
2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.
预习导学
阅读教材第29至32页,自学“例1”“思考”“探究”,掌握用描点法画出函数y=ax2的图象,理解其性质.
自学反馈学生独立完成后集体订正
①画函数图象的一般步骤:列表-描点-连线.
②在同一坐标系中画出函数y=x2、y=x2和y=2x2的图象.
解:略
根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,再对称取点.
③观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点).
④找出上述三条抛物线的异同:开口向上,关于y轴对称,顶点坐标为(0,0).
可从顶点、对称轴、开口方向、开口大小去比较寻找规律.
⑤在同一坐标系中画出函数y=-x2、y=-x2和y=-2x2,并找出它们图象的异同.
解:略
归纳一般地,抛物线y=ax2的对称轴是y轴,顶点是(0,0),当a0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大.
合作探究
活动1小组讨论
例1填空:①函数y=(-x)2的图象是____,顶点坐标是____,对称轴是____,开口方向是____.
②函数y=x2、y=x2和y=-2x2的图象如图所示,请指出三条抛物线.
解:①抛物线,(0,0),y轴,向上;
②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=x2,中间为y=x2,在x轴下方的为y=-2x2.
解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a0时,开口向上;当a0时,开口向下,a越大,开口越小.
例2已知函数y=(m+2)x是关于x的二次函数.
①求满足条件的m的值;
②m为何值时,抛物线有最低点?求这个最低点;当x为何值时,y随x的增大而增大?
③m为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?
解:①由题意得解得
∴当m=2或m=-3时,原函数为二次函数.
②若抛物线有最低点,则抛物线开口向上,∴m+20,即m-2.∴只能取m=2.
∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x0时,y随x的增大而增大.
③若函数有最大值,则抛物线开口向下,∴m+20,即m-2.∴只能取m=-3.
∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴当m=-3时,函数有最大值为0.∴当x0时,y随x的增大而减小.
要结合图象来分析完成此题.
活动2跟踪训练(独立完成后展示学习成果)
1.函数y=ax2与y=-ax2(a≠0)的图象之间有何关系?
解:关于x轴对称
2.已知函数y=ax2经过点(1,2).①求a的值;②当x0时,y的值随x值的增大而变化的情况.
解:①a=2②当x0时,y的值随x值的增大而减小
3.当m=-2时,抛物线y=(m-1)x开口向下,对称轴为y轴,当x0时,y随x的增大而增大;当x0时,y随x的增大而减小.
二次项系数a是决定开口方向和开口大小的,同时根据开口方向也可以判断a的正负.
4.二次函数y=-x2,当x1x20,则y1与y2的关系是y1y2.
要结合图象分析解题.
5.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是(B)
活动3课堂小结
学生试述:这节课你学到了些什么?
当堂训练
教学至此,敬请使用学案当堂训练部分.

九年级《二次函数y=ax2的图象》导学案


《二次函数y=ax2的图象》导学案
一、学习目标:
函数类型
一般形式
图象
性质
一次函数

反比例函数

1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.
二、学习过程:(一)复习回顾:
(二)探索新知:在坐标纸上画二次函数y=x2的图象.
【提示】:画图象的一般步骤:①列表(自变量是全体实数时以x=___为中心列表;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).
列表:描点,并连线(在坐标纸上进行)
x

-3
-2
-1
0
1
2
3

y=x2


由图象可得二次函数y=x2的性质:
1.二次函数y=x2是一条曲线,把这条曲线叫做______________.
2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.
3.自变量x的取值范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.
5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.
6.抛物线y=x2有____________点(填“最高”或“最低”).
三、例题分析
例1在y=x2的图象所在的坐标系中,画出函数y=x2,,y=2x2的图象.
解:列表并填:
x

-4
-3
-2
-1
0
1
2
3
4

y=x2


x

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2

y=2x2


归纳:抛物线y=x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).
例2请在例1的直角坐标系中画出函数y=-x2,y=-x2,y=-2x2的图象.
x

-3
-2
-1
0
1
2
3

y=-x2


x

-4
-3
-2
-1
0
1
2
3
4

y=-x2


x

-4
-3
-2
-1
0
1
2
3
4

y=-2x2


列表:

归纳:抛物线y=-x2,y=-x2,y=-2x2的二次项系数a______0,顶点都是________,
对称轴是___________,顶点是抛物线的最________点(填“高”或“低”).
四、理一理
1.抛物线y=ax2的性质
图象(草图)
开口
方向
顶点
对称轴
有最高或最低点
最值
a>0

当x=____时,y有最______值,是______.
a<0

当x=____时,y有最______值,是______.
2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______
对称,开口大小_______________.
3.当a>0时,a越大,抛物线的开口越___________;
当a<0时,|a|越大,抛物线的开口越_________;
因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越________.
五、课堂检测
1.填表:
开口方向
顶点
对称轴
有最高或最低点
最值
y=x2
当x=____时,y有最_______值,是______.
y=-8x2

当x=____时,y有最_______值,是______.
2.若二次函数y=ax2的图象过点(1,-2),则a的值是___________.
3.二次函数y=(m-1)x2的图象开口向下,则m____________.
4.如图,①y=ax2②y=bx2③y=cx2④y=dx2
比较a、b、c、d的大小,用“>”连接.____________________________
六、强化作业:
1.函数y=x2的图象开口向_______,顶点是__________,
对称轴是________,当x=___________时,有最________
值是_________.
2.二次函数y=mx有最低点,则m=___________.
3.二次函数y=(k+1)x2的图象如图所示,则k的取值
范围为___________.
4.写出一个过点(1,2)的函数表达式______

文章来源:http://m.jab88.com/j/90017.html

更多

最新更新

更多