88教案网

二次函数的图象及性质

教案课件是老师不可缺少的课件,大家应该开始写教案课件了。只有写好教案课件计划,才能够使以后的工作更有目标性!你们知道哪些教案课件的范文呢?下面是小编为大家整理的“二次函数的图象及性质”,希望对您的工作和生活有所帮助。

九年级数学下册第26章导学稿

课题二次函数的图象及性质三课型新授课

审核人九年级数学备课组级部审核学习时间第8周第3导学稿

教师寄语伟人之所以伟大,是因为他处逆境时,别人失去了信心,他却下决心实现自己的目标。

学习目标(2)掌握二次函数y=ax2y=a(x-h)2与y=a(x-h)2+k的性质,并能灵活运用。

2.理解二次函数y=ax2y=a(x-h)2与y=a(x-h)2+k之间的平移关系,能灵活运用。

教学重点掌握二次函数y=ax2y=a(x-h)2与y=a(x-h)2+k的性质、平移,并能灵活运用。

教学难点掌握二次函数y=ax2y=a(x-h)2与y=a(x-h)2+k的性质、平移,并能灵活运用。

教学方法小组合作交流

学生自主活动材料

一.前置性自学

结合二次函数y=-12x2,y=-12x2-1的图象,回答:(1)两条抛物线的位置关系。(2)分别说出它们的对称轴、开口方向和顶点坐标。(3)说出它们所具有的公共性质。

二.合作探究

1、在同一直角坐标系中,画出下列函数的图象.(如图)

,,

它们的开口方向都向,对称轴分别、、,顶点坐标分别为、、.

思考:(1)对于抛物线,当x时,函

数值y随x的增大而减小;当x时,函数值y随x的增大而增大;当x时,函数取

得最值,最值y=.抛物线呢?(口答)

(2)抛物线和抛物线分别是由抛物线向左、向右平移2个单位得到的.如果要得到抛物线,应将抛物线作怎样的平移?

它们的开口方向都向,对称轴分别、、,顶点坐标分别为、、.

三.拓展提升

1、已知抛物线y=3x2将它向左平移2个单位得抛物线_____________________

将它向右平移3个单位得抛物线_______________________

2、将抛物线y=3(x+2)2向左平移3个单位得抛物线______________________

将抛物线y=3(x+2)2向右平移3个单位得抛物线________________________

3、把抛物线向左平移5个单位,再向下平移7个单位所得的抛物线解析式是

4、已知s=–(x+1)2–3,当x为时,s取最值为。

5、一个二次函数的图象与抛物线形状,开口方向相同,且顶点为,那么这个函数的解析式是

6、把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=-3(x-h)2的图象,若抛物线y=a(x-4)2的顶点A,且与y轴交于点B,抛物线y=-3(x-h)2的顶点是M,求ΔMAB的面积.

四.当堂反馈

1.填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线

向平移个单位得到的;抛物线y=-2(x-2)2-3的开口,对称轴是,顶点坐标

是,它可以看作是由抛物线y=-2x2向平移个单位再向平移个单位得到的。

2、把二次函数的图象向左平移2个单位,再向上平移1个单位所得到的图象对应的二次函数关系为()

A、B、

C、D、

自我评价专栏(分优良中差四个等级)

扩展阅读

二次函数的图象与性质


每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“二次函数的图象与性质”,欢迎您阅读和收藏,并分享给身边的朋友!

2.2二次函数的图象与性质

教学目标设计

知识目标:

1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

情感目标:

进一步培养数形结合方法研究函数的性质

教学方法设计

让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识.交流中发现新知识.

教学过程

一、温故知新,导入新课

温故知新

1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?

(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。

2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?

(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)

3.函数y=-4(x-2)2+1具有哪些性质?

(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)

提出问题,引入新课

4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?

(因为y=-12x2+x-52=-12(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)。

5.你能画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质吗?

二、自主学习,合作探究

解决问题4:不画出图象,如何求出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标?

(板演配方过程)

我们已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标。

根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质。

解:(1)列表:在x的取值范围内列出函数对应值表;

x…-2-101234…

y…-612

-4-212

-2-212

-4-612

(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象。

当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;

当x=1时,函数取得最大值,最大值y=-2

三、巩固练习

做一做

1.请你按照上面的方法,画出函数y=12x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?

2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?

四、变式拓展

以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?

y=ax2+bx+c=a(x2+bax)+c=a+c=a+c-b24a=a(x+b2a)2+4ac-b24a

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

五、课堂小结:

通过本节课的学习,你学到了什么知识?有何体会?

六、课后作业:

1.填空:

(1)抛物线y=x2-2x+2的顶点坐标是_______;

(2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;

(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;

(4)抛物线y=-12x2+2x+4的对称轴是_______;

(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.

2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。

3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)y=3x2+2x;(2)y=-x2-2x

(3)y=-2x2+8x-8(4)y=12x2-4x+3

板书设计

1、画函数y=ax2+bx+c(a≠0)的图象。

(列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)

2、二次函数y=ax2+bx+c(a≠0),

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

(最值与抛物线的开口方向及顶点的纵坐标有关。)

课后反思

在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数是由如何平移得来,并熟练掌握二次函数图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数y=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。

中考复习二次函数的图象与性质(二)学案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家应该开始写教案课件了。认真做好教案课件的工作计划,才能完成制定的工作目标!你们知道多少范文适合教案课件?小编特地为大家精心收集和整理了“中考复习二次函数的图象与性质(二)学案”,但愿对您的学习工作带来帮助。

课时14.二次函数的图象与性质(二)

班级_________学号_________姓名_________

【课前热身】

1.(10济南)在平面直角坐标系中,抛物线与轴的交点的个数是()

A.3B.2C.1D.0

2.(10金华)若二次函数的部分图象如图所示,则关于x的一元二次方程的一个解,另一个解;

3.(10天津)已知二次函数()的图象如图所示,有下列结论:()

①;②;③;④.

其中,正确结论的个数是(A)1(B)2(C)3(D)4

4.已知二次函数y=ax2+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是。如果y随x的增大而减少,那么自变量x的变化范围是______。

5.若抛物线与x轴只有一个交点,则m的值______

【考点链接】

1.二次函数的解析式:(1)一般式:;(2)顶点式:;(3)交点式:.

2.顶点式的几种特殊形式.

.

3.抛物线与轴的交点

①有两个交点;

②有一个交点(顶点在轴上);

③没有交点.

4.抛物线与轴两交点:若抛物线与轴两交点为,则当时,x的范围______________时,x的范围____________________

时,x的范围______________时,x的范围____________________

【典例精析】

例1已知二次函数的图像过点A(0,5)

(1)求m的值,并写出二次函数的关系式

(2)求二次函数图像的顶点坐标,对称轴以及与x轴的交点坐标

(3)画出图像示意图,根据图像说明,x在什么范围内取值时,?

例2.如图所示,求二次函数的关系式。

例3(09肇庆)已知一元二次方程的一根为2.

(1)求关于的关系式;

(2)求证:抛物线与轴有两个交点;

(3)设抛物线的顶点为M,且与x轴相交于A(,0)、B(,0)两点,求使△AMB面积最小时的抛物线的解析式.

【当堂反馈】

1.(10蚌埠)已知函数,并且是方程的两个根,则实数的大小关系可能是

A.B.C.D.

2(10三明)抛物线的图象和x轴有交点,则k的取值范围是()

A.B.且C.D.且

3.二次函数(a≠0)的y与x的对应值如表,则判断正确的是()

x...-1013...

y...-3131...

A.抛物线开口向上B.抛物线与x轴交于负半轴

C.当x=4时,D.方程的正根在3与4之间

4.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

【课后精练】

1.已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。

2.(10红河)做出二次函数的图像,并将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.

(2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?

3.(10益阳)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).

(1)求经过A、B、C三点的抛物线的解析式;

(2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;

(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.

4.中考指南P56.18

二次函数y=ax2的图象和性质学案


22.1.2二次函数y=ax2的图象和性质
出示目标
1.能够用描点法作出函数y=ax2的图象,并能根据图象认识和理解其性质.
2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.
预习导学
阅读教材第29至32页,自学“例1”“思考”“探究”,掌握用描点法画出函数y=ax2的图象,理解其性质.
自学反馈学生独立完成后集体订正
①画函数图象的一般步骤:列表-描点-连线.
②在同一坐标系中画出函数y=x2、y=x2和y=2x2的图象.
解:略
根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,再对称取点.
③观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点).
④找出上述三条抛物线的异同:开口向上,关于y轴对称,顶点坐标为(0,0).
可从顶点、对称轴、开口方向、开口大小去比较寻找规律.
⑤在同一坐标系中画出函数y=-x2、y=-x2和y=-2x2,并找出它们图象的异同.
解:略
归纳一般地,抛物线y=ax2的对称轴是y轴,顶点是(0,0),当a0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大.
合作探究
活动1小组讨论
例1填空:①函数y=(-x)2的图象是____,顶点坐标是____,对称轴是____,开口方向是____.
②函数y=x2、y=x2和y=-2x2的图象如图所示,请指出三条抛物线.
解:①抛物线,(0,0),y轴,向上;
②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=x2,中间为y=x2,在x轴下方的为y=-2x2.
解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a0时,开口向上;当a0时,开口向下,a越大,开口越小.
例2已知函数y=(m+2)x是关于x的二次函数.
①求满足条件的m的值;
②m为何值时,抛物线有最低点?求这个最低点;当x为何值时,y随x的增大而增大?
③m为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?
解:①由题意得解得
∴当m=2或m=-3时,原函数为二次函数.
②若抛物线有最低点,则抛物线开口向上,∴m+20,即m-2.∴只能取m=2.
∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x0时,y随x的增大而增大.
③若函数有最大值,则抛物线开口向下,∴m+20,即m-2.∴只能取m=-3.
∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴当m=-3时,函数有最大值为0.∴当x0时,y随x的增大而减小.
要结合图象来分析完成此题.
活动2跟踪训练(独立完成后展示学习成果)
1.函数y=ax2与y=-ax2(a≠0)的图象之间有何关系?
解:关于x轴对称
2.已知函数y=ax2经过点(1,2).①求a的值;②当x0时,y的值随x值的增大而变化的情况.
解:①a=2②当x0时,y的值随x值的增大而减小
3.当m=-2时,抛物线y=(m-1)x开口向下,对称轴为y轴,当x0时,y随x的增大而增大;当x0时,y随x的增大而减小.
二次项系数a是决定开口方向和开口大小的,同时根据开口方向也可以判断a的正负.
4.二次函数y=-x2,当x1x20,则y1与y2的关系是y1y2.
要结合图象分析解题.
5.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是(B)
活动3课堂小结
学生试述:这节课你学到了些什么?
当堂训练
教学至此,敬请使用学案当堂训练部分.

文章来源:http://m.jab88.com/j/90002.html

更多

最新更新

更多