88教案网

中考数学复习一次函数的图象与性质学案

每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“中考数学复习一次函数的图象与性质学案”,仅供参考,大家一起来看看吧。

课时11一次函数的图象与性质

班级_________学号_________姓名_________

【课前热身】

1.(07福建)经过点(,)的正比例函数的解析式为___________.

2.(07湖北)如图,一次函数的图象经过A、B两点,

则关于x的不等式的解集是.

3.已知正比例函数y=(3k-1)x,y随着x的增大而增大,则k的取值范围是()

A.k0B.k0C.kD.k

4.一次函数y=ax+b与y=ax+c(a0)在同一坐标系中的图象可能是()

5.(08郴州)如果点M在直线上,则M点的坐标可以是()

A.(-1,0)B.(0,1)C.(1,0)D.(1,-1)

6.(10镇江)两直线的交点坐标为()

A.(—2,3)B.(2,—3)C.(—2,—3)D.(2,3)

【考点链接】

1.正比例函数的一般形式是__________.一次函数的一般形式是__________________.

2.一次函数的图象是经过和两点的.

3.求一次函数的解析式的方法是,

4.一次函数的图象与性质

k、b的符号k>0b>0

k__0b__0

k__0b__0

K__0b___0

图像的大致位置

经过象限第象限第象限第象限第象限

性质y随x的增大

而y随x的增大而y随x的增大而y随x的增大而

【典例精析】

例1如图,直线经过点A(-1,-2)和点B(-2,0),直线经过点A,则不等式的解集为()

A.B.CD

例2已知一条直线经过点A(0,4)点B(2,0),如图,将这条直线向左平移与x轴负半轴,y轴负半轴分别交于点C,点D,使DB=DC。求这条直线CD的解析式。

例3.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票。同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育场。右图中线段AB,OB分别表示父子两送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系,结合图像解答下列问题(假设骑自行车和步行的速度保持不变)

(1)求点B的坐标和AB所在直线的函数关系式

(2)小明能否在比赛开始前到达体育馆?

例4(09年安顺)已知一次函数和反比例函数的图象交于点A(1,1).

(1)求两个函数的解析式;

(2)若点B是轴上一点,且△AOB是直角三角形,求B点的坐标。

【当堂反馈】

1.(10无锡)若一次函数,当得值减小1,的值就减小2,则当的值增加2时,的值由无锡市天一实验学校金杨建录制QQ:623300747.转载请注明!()

A.增加4B.减小4C.增加2D.减小2

2.(10荆州)函数,.当时,x的范围是!()

A..x<-1B.-1<x<2

C.x<-1或x>2D.x>2

3.已知关于、的一次函数的图象经过平面直角坐标系中的第一、三、四象限,那么的取值范围是

4.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.

5.(10大连)如图,直线1:与轴、轴分别相交于点、,△AOB与△ACB关于直线对称,则点C的坐标为

6.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有____________个

7.(10绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,

叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与

x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.

(1)求函数y=x+3的坐标三角形的三条边长;

(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.

[课后精练]

1.一次函数图象与y=6-x交于点A(5,k),且与直线y=2x-3无交点,则这个一次函数的解析式为y=________.

2.(10常州)如图,一次函数的图像上有两点A、B,A点的横坐标为2,B点的横坐标为,过点A、B分别作的垂线,垂足为C、D,的面积分别为,则的大小关系是()

A.B.C.D.无法确定

3.(10咸宁)在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为、(km),、与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;

(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;

(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

4.中考指南P50.12

5.中考指南P50.14

延伸阅读

一次函数图象的应用


第六章一次函数
5.一次函数图象的应用(一)
一、学生起点分析
学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.

二、教学任务分析
《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.

三、教学目标分析
知识与技能目标:
1.能通过函数图象获取信息,解决简单的实际问题;
2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:
1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;
2.通过具体问题的解决,培养学生的数学应用能力;
3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.
情感与态度目标:
1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.
●教学重点
一次函数图象的应用.
●教学难点
正确地根据图象获取信息,并解决现实生活中的有关问题.

四、课前准备
有条件的学校可以准备多媒体课件,没有条件的可以准备投影片或者小黑板.

五、教学过程
本节课分为八个教学环节

第一环节复习引入
内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?
在一次函数中
当时,随的增大而增大,
当时,直线交轴于正半轴,必过一、二、三象限;
当时,直线交轴于负半轴,必过一、三、四象限.
当时,随的增大而减小,
当时,直线交轴于正半轴,必过一、二、四象限;
当时,直线交轴于负半轴,必过二、三、四象限.
意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了、的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.
效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.
说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.

第二环节初步探究
内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,回答下列问题:
(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?
(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?
(3)按照这个规律,预计持续干旱多少天水库将干涸?
(根据图象回答问题,有困难的可以互相交流.)
答案:(1)求干旱持续10天时的蓄水量,也就是求等于10时所对应的的值.当时,约为1000万米3.同理可知当为23天时,约为750万米3.
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当等于400万米3时,求所对应的的值.当等于400万米3时,所对应的的值约为40天.
(3)水库干涸也就是为0,所以求函数图象与横轴交点的横坐标即为所求.当为0时,所对应的的值约为60天.
意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.
效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育.
说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).

第三环节反馈练习:
内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数(户)与宣传时间(天)的函数关系如图所示.
根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动?
(2)全校师生共有多少户?该活动持续了几天?
(3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到800户?
(5)写出参加活动的家庭数与活动时间之间的函数关系式
答案:(1)200户;
(2)全校师生共有1000户,该活动持续了20天;
(3)平均每天增加了40户;
(4)第15天时,参加该活动的家庭数达到800户;
(5).
意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.
效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.
说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)

第四环节深入探究
内容:1.看图填空
(1)当时,;
(2)直线对应的函数表达式是________________.
答案:(1)观察图象可知当时,;
(2)直线过(-2,0)和(0,1)
设表达式为,得


把②代入①得
∴直线对应的函数表达式是
2.议一议
一元一次方程与一次函数有什么联系?(请大家根据刚做的练习来进行解答.)
答案:一元一次方程的解为,一次函数包括许多点.因此是的特殊情况.
当一次函数的函数值为0时,相应的自变量的值即为方程的解.
函数与轴交点的横坐标即为方程的解.
意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x轴交点的横坐标即为方程的解.
效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.

第五环节反馈练习
内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.
(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.
解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.
(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.
(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于,故到第12年底,该地区的沙漠面积能减少到176万千米2.
意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.
效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.

第六环节探究升级
内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数(户)与宣传时间(天)的函数关系如图所示.
根据图象回答下列问题:
(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?
(7)写出活动开展的第天节约的水量与天数的函数关系.
答案:(6)第20天可节约100吨水;
(7).
意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.
效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.
说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.(见分层教学第3题)

第七环节课堂小结
内容:本节课主要应掌握以下内容:
1.能通过函数图象获取信息.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系.
意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.
效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.
说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.

第八环节布置作业
内容:
1.课外探究
在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.
2.课外作业习题5.6

六、教学设计反思
(1)设计理念
一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.
(2)评价方式
在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.
(3)分层教学
1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量(升)与摩托车行驶路程(千米)之间的关系如图所示.
根据图象回答下列问题:
(1)一箱汽油可供摩托车行驶多少千米?
(2)摩托车每行驶100千米消耗多少升汽油?
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?
分析:(1)函数图象与轴交点的横坐标即为摩托车行驶的最长路程.
(2)x从0增加到100时,从10开始减少,减少的数量即为消耗的数量.
(3)当小于1时,摩托车将自动报警.
答案:(1)观察图象,得
当时,
因此一箱汽油可供摩托车行驶500千米.
(2)从0增加到100时,从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.
(3)当时,
因此行驶了450千米后,摩托车将自动报警.
2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.
盒内钱数(元)与存钱月数之间的函数关系如图所示.观察图象回答下列问题:
(1)盒内原来有多少元?2个月后盒内有多少元?
(2)该同学经过几个月能存够200元?
(3)该同学至少存几个月存款才能超过140元?
解:(1)40,80.
(2)当时,,所以该同学经过8个月能存够200元.
(3)观察图象可知,该同学经过5个月能超过140元.
3.(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数(户)与宣传时间(天)的函数关系如图所示.
根据图象回答下列问题:
(8)写出活动开展到第5天时,全校师生共节约多少吨水?
答案:(8)第5天时,全校师生共节约160吨水.
意图:学生知识上有一定的分层,可更好地调动不同学生的学习热情.教师可根据学生的掌握情况,适当选择上述题目要求学生分层完成.
效果:通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,
鼓励学生相互讨论,得出结果.
●附:板书设计
一次函数图象的应用(一)

一、做一做

(保留性板书)(暂时性板书)

中考复习二次函数的图象与性质(二)学案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家应该开始写教案课件了。认真做好教案课件的工作计划,才能完成制定的工作目标!你们知道多少范文适合教案课件?小编特地为大家精心收集和整理了“中考复习二次函数的图象与性质(二)学案”,但愿对您的学习工作带来帮助。

课时14.二次函数的图象与性质(二)

班级_________学号_________姓名_________

【课前热身】

1.(10济南)在平面直角坐标系中,抛物线与轴的交点的个数是()

A.3B.2C.1D.0

2.(10金华)若二次函数的部分图象如图所示,则关于x的一元二次方程的一个解,另一个解;

3.(10天津)已知二次函数()的图象如图所示,有下列结论:()

①;②;③;④.

其中,正确结论的个数是(A)1(B)2(C)3(D)4

4.已知二次函数y=ax2+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是。如果y随x的增大而减少,那么自变量x的变化范围是______。

5.若抛物线与x轴只有一个交点,则m的值______

【考点链接】

1.二次函数的解析式:(1)一般式:;(2)顶点式:;(3)交点式:.

2.顶点式的几种特殊形式.

.

3.抛物线与轴的交点

①有两个交点;

②有一个交点(顶点在轴上);

③没有交点.

4.抛物线与轴两交点:若抛物线与轴两交点为,则当时,x的范围______________时,x的范围____________________

时,x的范围______________时,x的范围____________________

【典例精析】

例1已知二次函数的图像过点A(0,5)

(1)求m的值,并写出二次函数的关系式

(2)求二次函数图像的顶点坐标,对称轴以及与x轴的交点坐标

(3)画出图像示意图,根据图像说明,x在什么范围内取值时,?

例2.如图所示,求二次函数的关系式。

例3(09肇庆)已知一元二次方程的一根为2.

(1)求关于的关系式;

(2)求证:抛物线与轴有两个交点;

(3)设抛物线的顶点为M,且与x轴相交于A(,0)、B(,0)两点,求使△AMB面积最小时的抛物线的解析式.

【当堂反馈】

1.(10蚌埠)已知函数,并且是方程的两个根,则实数的大小关系可能是

A.B.C.D.

2(10三明)抛物线的图象和x轴有交点,则k的取值范围是()

A.B.且C.D.且

3.二次函数(a≠0)的y与x的对应值如表,则判断正确的是()

x...-1013...

y...-3131...

A.抛物线开口向上B.抛物线与x轴交于负半轴

C.当x=4时,D.方程的正根在3与4之间

4.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

【课后精练】

1.已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。

2.(10红河)做出二次函数的图像,并将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.

(2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?

3.(10益阳)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).

(1)求经过A、B、C三点的抛物线的解析式;

(2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;

(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.

4.中考指南P56.18

一次函数图


班级_____________姓名_____________
课题:§5.3一次函数的图像(1)(初二数学上050)A版
课型:新课
学习目标:(学习重点)
会画一次函数的图象,能对一次函数的图象和其函数关系式y=kx+b(k≠0)进行探索,并初步预测常数k与b的取值对于直线的位置所产生的影响.
补充例题:
例1.在同一平面直角坐标系中作出下列函数的图象.
(1)y=12x;(2)y=12x+2;(3)y=-3x;(4)y=-3x+2.
解:列表
x……
y=12x
……
y=12x+2……
y=-3x
y=-3x+2

小结:一次函数(k、b为常数,k≠0)的图象是;
一般地,直线y=kx+b(k≠0)的图象经过点(0,)和(,0);
正比例函数y=kx(k≠0)的图象是经过(0,)和(1,)的______.
例2.画出直线y=-12x+1
(1)结合图像观察,图像分布在哪些象限?
(2)试判断A(12,34),B(-1,2)是否在你所画的函数图像上.
(3)当x取何值时,函数y=-12x+1的值大于0?

例3.画出直线y=-2x+3,借助图象找出:(1)直线上横坐标是2的点;(2)直线上纵坐标是-3的点;(3)直线上到y轴距离等于2的点.
(4)当x取何值时,函数y=-2x+3的值小于0?

例4.函数y=-5x+2与x轴的交点坐标是____,与y轴的交点坐标是________,图象与两坐标轴围成的三角形面积是.
例5.正方形ABCD的边长为2,点P是AD边上一动点,设AP=x.
⑴设梯形BCDP的面积为s,写出s与x的函数关系式.
⑵求x的取值范围.
⑶画出函数的图象.
课后续助:
一、填空题:
1.已知一次函数y=2x+4的图像经过点(m,8),则m=________
2.已知直线y=3x-8与x轴的交点坐标是____,与y轴的交点坐标是.图象与两坐标轴围成的三角形面积是.
3.若一次函数y=k(x+2)的图象与y轴的交点为(0,),则它的图象与x轴的交点坐标是_____________.
4.当x时,函数y=13x+1的值等于0,当x时,函数y=13x+1的值小于0,当x时,函数y=13x+1的值大于0.
二、选择题:
1.直线y=2x+3一定通过的两点是()
A.(0,0)和(1,5)B.(-1.5,0)和(2,3)
C.(0,3)和(2,0)D.(-1.5,0)和(0,3)
2.一次函数y=x-2的大致图象是()
D
3.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系图象表示为

三、解答题
1.在同一平面直角坐标系中画出函数y=x+2、y=x-2、
y=-x+2、y=-x-2的图象,这四条直线围成的是什么图形?

2.画出函数y=-3x+2的图象,借助图象找出:
(1)直线上横坐标是2的点,它的坐标是(,)
(2)直线上纵坐标是-1的点,它的坐标是(,)
(3)直线上到x轴的距离等于1的点,它的坐标是_______________
(4)直线上到y轴的距离等于2的点,它的坐标是_______________
(5)点(3、7)______(填“在”或“不在”)此图象上

3.求函数y=32x-2与x轴、y轴的交点坐标,并求这条直线与
两坐标轴围成的三角形的面积.

4.已知一次函数y=2x+4与y=bx-2的图象在x轴上相交于同一点,求b的值.

文章来源:http://m.jab88.com/j/90009.html

更多

最新更新

更多