每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《中考数学总复习四边形综合导学案(湘教版)》,仅供参考,大家一起来看看吧。
第28课四边形综合
【例题精讲】
例题1.如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于F.
(1)求证:∠DEF=∠CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.
例题2.如图,矩形ABCD中,AB=3cm,AD=6cm,点E为AB边上的任意一点,四边形EFGB也是矩形,且EF=2BE,则S△AFC.
例题3.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
例题4.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
例题5.在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图(1),当点M在AB边上时,连接BN.
①求证:;
②若∠ABC=60°,AM=4,∠ABN=,求点M到AD的距离及tan的值;
(2)如图(2),若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).
试问:x为何值时,△ADN为等腰三角形.
【当堂检测】
1.如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()
A、∠1=∠2B、BE=DFC、∠EDF=60°D、AB=AF
2.如图,直线上有三个正方形,若的面
积分别为5和11,则的面积为()
A.4B.6C.16D.55
3.如图,矩形ABCD的周长是20cm,以AB、CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和68cm2,那么矩形ABCD的面积是()
A.21cm2B.16cm2
C.24cm2D.9cm2
4.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是.
5.如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分面积是多少?
第26课平行四边形
【知识梳理】
1、掌握平行四边形的概念和性质
2、四边形的不稳定性.
3、掌握平行四边形有关性质和四边形是平行四边形的条件.
4、能用平行四边形的相关性质和判定进行简单的逻辑推理证明.
【例题精讲】
例题1.(2009年常德市)下列命题中错误的是()
A.两组对边分别相等的四边形是平行四边形
B.对角线相等的平行四边形是矩形
C.一组邻边相等的平行四边形是菱形
D.一组对边平行的四边形是梯形
例题2.(2008年泰州市)在平面上,四边形ABCD的对角线AC与BD相交于O,且满足AB=CD.有下列四个条件:(1)OB=OC;(2)AD∥BC;(3);(4)∠OAD=∠OBC.若只增加其中的一个条件,就一定能使∠BAC=∠CDB成立,这样的条件可以是()
A.(2)、(4)B.(2)C.(3)、(4)D.(4)
例题3.(2009年威海)如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()
A.B.C.D.
例题4.如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为()
A.8B.9.5C.10D.11.5
例题5.(2009年新疆)如图,是四边形的对角线上两点,.
求证:(1).
(2)四边形是平行四边形.
【当堂检测】
1.(2008年永州市).下列命题是假命题的是()
A.两点之间,线段最短;B.过不在同一直线上的三点有且只有一个圆.
C.一组对应边相等的两个等边三角形全等;D.对角线相等的四边形是矩形.
2.如图,一个四边形花坛,被两条线段分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是,若,,则有()
A.B.C.D.都不对
3.(2009襄樊)如图,在平行四边形中,于E且是一元二次方程的根,则平行四边形的周长为()
A.B.C.D.
4.(2009年南宁市)如图(1),在边长为5的正方形中,点、分别是、边上的点,且,.
(1)求∶的值;
(2)延长交正方形外角平分线,如图2试判断的大小关系,并说明理由;
(3)在图(2)的边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由.
第三章四边形
小结与复习
一、教学目标
1.使学生能把本章的知识条理化、系统化.能加深理解,提高综合运用和灵活运用知识的能力.
2.使学生对本章所学过的一些数学思想方法进行归纳总结,提高学生分析问题和解决问题的能力.
3.使学生在搞清四边形与特殊四边形的从属关系的过程中,增强辩证唯物主义观念.
二、教学重点
四边形与特殊四边形的从属关系及几种特殊四边形的性质和判定.
三、教学方法
训练综合法.
四、教学过程
(一)复习本章知识要点
1.四边形和几种特殊四边形之间的关系
2.几种特殊四边形的性质
3.几种特殊四边形的常用判定方法
4.中位线性质
(1)三角形中位线平行于第三边,且等于第三边的一半.
(2)梯形中位线平行于两底,且等于两底和的一半.
5.其他重要定理
(1)四边形内角和等于360°;n边形内角和等于(n-2)180°;任意多边形外角和等于360°.
(2)关于中心对称的两个图形的性质:是全等形;对称点连线都经过对称中心并且被对称中心平分.
(3)平行线等分线段定理.
(二)灵活运用知识
例1已知:如图4-94,△ABC中,∠A=90°,D、F、E分别是BC、CA、AB边的中点,求证:AD=EF.
证明:∵E、F分别为AB、AC中点,
又∵∠BAC=90°,AD为BC边上的中线,
∴AD=EF.
例2已知:如图4-95,ABCD,直线MN,AA′⊥MN于A′,BB′⊥MN于B′,CC′⊥MN于C′,DD′⊥MN于D′.
求证:AA′+CC′=BB′+DD′.
分析:因为AA′、BB′、CC′、DD′都垂直MN,所以AA′∥CC′,BB′∥DD′,要证AA′+CC′=BB′+DD′,可把它们分别看成梯形的两底和,则连结AC、BD,再过点O作OO′⊥MN于O′,就可利用梯形中位线性质证出
证明:在ABCD中,连结AC、BD交于点O,过点O作OO′⊥MN于O′.
∴AO=OC,BO=DO(平行四边形对角线互相平分).
∵AA′⊥MN,CC′⊥MN,OO′⊥MN,
∵AA′∥OO′∥CC′.
∴A′O′=O′C′(经过梯形一腰中点与底平行的直线,必平分另一腰).
∴200′=AA′+CC′(梯形中位线定理).
同理200′=BB′+DD′,
∴AA′+CC′=BB′+DD′.
例3如图11,已知梯形ABCD,AD∥BC,AE=EG=GB,且EF∥GH∥BC,AD=20cm,BC=29cm,求EF、GH的长.
例4如图,过△ABC的顶点A,作∠B和∠C的外角平分线的垂线AE、AF,垂足分别为E、F,连结EF.
求证:(1)EF∥BC;
小结:平行四边形和几种特殊的四边形的概念、性质及判定是复习的重点,同学们要熟练掌握,并会灵活运用.
(五)作业
教材中7、8、10、11、17、18.
(六)板书设计
文章来源:http://m.jab88.com/j/71913.html
更多