光的直线传播的考点分析
考点:平面镜的特点:
①光线的角度变化关系
入射角改变多少,反射角改变多少
平面镜转动θ角,入射角改变θ,反射光线的反射角改变2θ角。
②运动关系
镜不动,物像移动的速度大小相等,方向相反。
当物不动,平面镜与物像的连线的夹角为θ时,平面镜移动的速度V1和像移动的速度V2的关系为:V2=2V1sinθ。
③物像关系(透视关系)
大小相等,正立的虚像,像、物关于平面镜对称,左右颠倒
(平面镜内成的像,若在平面镜后面透视,看到即为实际)
④光源在两相交的平面镜内的成像个数
考点:平面镜成像作图
物像对称定光路,入射、反射两角度;光路可逆巧应用,虚实、箭头尺规图。
考点:发生折射的两个面平行,则出射光线与入射光线平行。
考点:介质的折射率测定的方法
1、用折射法测定
1、如图所示,一储油桶,底面直径与高均为d,当桶内无油时,从某点A恰能看到桶底边缘上的某点B。当桶内油的深度等于桶高一半时,由A沿AB方向看去,看到桶底上的点C,两点C、B相距d/4,求油的折射率和光在油中传播速度。
答案:
如图所示,因底面直径与桶高相等,由此可知
∠AOF=∠ABG=450;由OD=2CD可知∠COD的正弦
油的折射率
油中的传播速度
2、如图所示,将刻度尺直立在装满某种透明液体的广口瓶中,从刻度尺上A和B两点射出的光线AC和BC在C点被折射和反射都沿直线CD传播,已知刻度尺上两相邻两根刻度线间的距离为10cm,刻度尺在右边缘与广口瓶右内壁之间的距离d=25cm,则瓶内流体的折射率为多少?
2、全反射法测定液体的折射率
考点:全反射的应用—光导纤维
光在光导纤维中传播时,光程为纤维长度的n倍,其中n为纤维的折射率。S=nL
1、如图所示,长为L、折射率为n的玻璃砖,若光线从A射入恰好在其中发生全反射,经过多次全反射后恰好从B端射出。光在真空中的速度为c,求光从A到B的时间。
光线通信是一种现代化的通信手段,它可以提供大容量、高速度、高质量的通信服务,为了研究问题的方便,我们将光导纤维简化为一根长直的玻璃管,如下图所示,设此玻璃管长为L,折射率为n且光在玻璃内界面上恰好发生全反射,若光在真空中的传播速度为c,则光通过此段玻璃管所需的时间为
A、B、C、D、
答案:A
如图5所示,一光导纤维内芯折射率为n1,外层折射率为n2,一束光信号与界面成α角由内芯射向外层,要在界面上发生全反射,必须满足什么条件
A、n1n2,α大于某一值B、n1n2,α大于某一值
C、n1n2,α小于某一值D、n1n2,α小于某一值
答案:C
一根直玻璃棒材料的折射率为n,要让从玻璃棒一端面射入的光线都能在玻璃棒内发生全反射而沿玻璃棒向前传播,则入射光线的入射角θ1应满足一定的条件,这条件是_____(答案:)
如图所示,是光导纤维的一部分,它可以认为是处于空气中的一个折射率为n的圆柱型透明体。要使从端面进入的所有光线都不会从侧面射出,而是从另一个端面射出,这种透明体的折射率必须满足什么条件?
解:光线从空气进入光导纤维,最大的入射角为900,此时的折射角为θ2:………………①
在光导纤维的面上仍能发生全反射,则入射角θ3=900-θ2
θ3≥C,又sinC=1/n,
………………②
又…………………………③
由①②③得:
一根直玻璃棒材料的折射率为n,要让从玻璃棒一端面射入的光线都能在玻璃棒内发生全反射而沿玻璃棒向前传播,则入射光线的入射角θ1应满足一定的条件,这条件是_____
答案:
考点:各量的变化关系
电磁感应与电路结合问题
一、等效法处理电磁感应与电路结合问题
解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零.
二、电磁感应中的动力学问题
这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:
三、电磁感应中的能量、动量问题
无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。
(一)电磁感应中的“双杆问题”
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
1、“双杆”向相反方向做匀速运动
当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速
当两杆分别沿相同方向运动时,相当于两个电池反向串联。
3.“双杆”中两杆都做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
四、电量的计算Q=IΔt
1、安培力的冲量公式求电量:
感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI。在时间△t内安培力的冲量
2、由法拉第电磁感应定律求:
3、
五、电磁感应中的图象问题
电磁感应现象中的图象问题通常分为两类:一类是由给出的电磁感应过程选出或画出正确的图象;二是由给定的有关图象分析电磁感应过程,求解相应物理量。分析此类问题时要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定,用愣次定律或右手定则判定感应电动势(电流)的方向,从而确定其正负.
交变电流
一、交流电中的各量:
电压电流适用范围备注
瞬时值e=Emsinωti=Imsinωt粒子在交变电场中的运动
最大值εm=NBSωIm=εm/R电容器耐压
有效值正弦
电流做功、电阻发热、保险丝的熔断、仪表读取的电压、电流有效值是对能的平均
非正弦根据电流的热效应计算
平均值
计算通过的电量平均值是对时间的平均
变压器
一、变压器的原理
1、构造
由一个闭合铁芯、原线圈、副线圈组成
2、工作原理
在同一铁芯上的磁通量的变化率处处相同
3、理想变压器中的几个关系
没有漏磁和发热损失的变压器即没有能量损失的变压器叫理想变压器
(1)电压关系
在同一铁芯上只有一组副线圈时
当有几组副线圈时
(2)功率关系
对于理想变压器不考虑能量损失,总有P入=P出
(3)电流关系
由功率关系,当只有一组副线圈时,I1U1=I2U2,得
当有多组副线圈时:I1U1=I2U2+I3U3+……,得I1n1=I2n2+I3n3+……
二、变压器的题型分析
(1)在同一铁芯上磁通量的变化率处处相同
(2)电阻和原线圈串联时,电阻与原线圈上的电压分配遵循串联电路的分压原理。
(3)理想变压器的输入功率等于输出功率
3.解决变压器问题的常用方法
思路1电压思路.变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……
思路2功率思路.理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……
思路3电流思路.由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……
思路4(变压器动态问题)制约思路.
(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.
(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.
(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;③总功率P总=P线+P2.
动态分析问题的思路程序可表示为:
U1P1
思路5原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“”型变压器时有
ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,
此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况.
远距离输电
一定要画出远距离输电的示意图来,包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1、n1/n2、n2/,相应的电压、电流、功率也应该采用相应的符号来表示。
从图中应该看出功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。
电压之间的关系是:。
电流之间的关系是:。
可见其中电流之间的关系最简单,中只要知道一个,另两个总和它相等。因此求输电线上的电流往往是这类问题的突破口。
输电线上的功率损失和电压损失也是需要特别注意的。分析和计算时都必须用,而不能用。
特别重要的是要会分析输电线上的功率损失,由此得出结论:⑴减少输电线功率损失的途径是提高输电电压或增大输电导线的横截面积。两者相比,当然选择前者。⑵若输电线功率损失已经确定,那么升高输电电压能减小输电线截面积,从而节约大量金属材料和架设电线所需的钢材和水泥,还能少占用土地。
需要引起注意的是课本上强调:输电线上的电压损失,除了与输电线的电阻有关,还与感抗和容抗有关。当输电线路电压较高、导线截面积较大时,电抗造成的电压损失比电阻造成的还要大。
作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师在教学期间更好的掌握节奏。你知道怎么写具体的教案内容吗?为此,小编从网络上为大家精心整理了《高考物理知识点速查复习电与磁》,仅供您在工作和学习中参考。
磁场对电流的作用
1、判断安培力作用下物体运动方向的方法
(1)电流元法
把整段电流等效为多段直线电流元,运用左手定则判断出每小段电流元受到的安培力的方向,从而判断出整段电流所受合力的方向,最后确定运动方向。
(2)等效法
环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析。
(3)利用结论法
①两电流相互平行时,同向电流相互吸引,反向电流相互排斥
②两电流不平行时,有转动到相互平行且方向相同的趋势,利用这些结论分析。
(4)特殊位置法
带电粒子在磁场中的运动
A、处理方法——定圆心,求半径,画轨迹,算周期
(1)、圆心的确定
①粒子线速度垂直半径,两半径的交点即为圆心
②圆心位置必定在圆中的一根弦的中垂线上。圆心也可认为是一个半径与弦的中垂线的交点。
(2)、半径的确定
①由公式计算②利用平面几何的关系求几何关系:如图12所示a、粒子速度的偏向角(Φ)等于回旋角(α)并等于AB弦与切线夹角(弦切角θ)的2倍。即Φ=α=2θ=ωt
b、直径所对的圆顶角是直角c、圆的弧长s与圆心角关系有:S=rθ
(3)、粒子在磁场中运动的时间
①利用公式:②粒子在磁场中做匀速圆周运动
B、带电粒子在磁场中运动的问题分类
①求偏转角问题②求运动时间问题③求入射速度、粒子质量、磁感应强度等问题
④磁场区域或粒子运动区域的大小问题
C、洛伦兹力作用下的多解问题
(1)带电粒子的电性的不确定形成多解(2)磁场方向不确定形成多解
(3)临界状态不惟一形成多解(4)运动的重复性形成多解
电磁感应的基本知识
考点1、磁通量(Φ)
(1)定义:穿过某一面积的磁感线的条数叫做穿过这一面积的磁通量。磁通量简称磁通。
①若磁场方向与面积垂直,磁场的磁感应强度为B,平面的面积为S,则穿过该平面的磁通量为Φ=BS
②若磁场方向与面积不垂直,则穿过该平面的磁通量等于磁感应强度与该平面在垂直于磁场方向上投影面积的乘积。
③若磁感线沿相反方向穿过同一平面,且正向磁感线条数为Φ1,反向磁感线条数为Φ2,则磁通量为Φ=Φ1-Φ2
(2)磁通量的变化量的计算
①ΔΦ=Φ2-Φ1;ΔΦ=BΔS;ΔΦ=SΔB
②开始和转过1800时平面都与磁场垂直,则磁通量的变化量ΔΦ=2BS(磁感应强度为B,平面的面积为S)
(3)磁通量的变化率
①磁通量的变化率:描述磁场中穿过某个面磁通量变化快慢的物理量。
②大小计算:
③在数值上等于单匝线圈产生的感应电动势的大小。
④在Φ—t图象中,图象的斜率表示
(4)引起某一回路磁通量变化的原因
(1)磁感强度的变化(2)线圈面积的变化(部分导体做切割磁感线运动)
(3)线圈平面的法线方向与磁场方向夹角的变化
考点2、感应电流的方向判断
(1)判断的方法:
①右手定则——部分导体做切割磁感线运动时产生的感应电流的方向
②楞次定律
(2)楞次定律的理解
运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:
①明确原磁场:弄清原磁场的方向及磁通量的变化情况.
②确定感应磁场:即根据楞次定律中的阻碍原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向.
③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.
(b)判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略
在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动.对其运动趋势的分析判断可有两种思路方法:
①常规法:
据原磁场(B原方向及ΔΦ情况)确定感应磁场(B感方向)判断感应电流(I感方向)导体受力及运动趋势.
②效果法
由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据阻碍原则,可直接对运动趋势作出判断,更简捷、迅速.
a、阻碍变化阻碍原磁通的变化
b、阻碍变化阻碍(导体间的)相对运动,即“来时拒,去时留”
c、阻碍变化阻碍原电流的变化,应用在解释自感现象的有关问题。
考点3、电动势的计算
(1)、用法拉第电磁感应定律计算
定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
感应电动势大小的计算式:
①线圈面积S不变,磁感应强度均匀变化:
②磁感强度不变,线圈面积均匀变化:
③B、S均不变,线圈绕过线圈平面内的某一轴转动时,计算式为:
(2)导体切割磁感线时产生感应电动势大小的计算式:
公式:
①若导体变速切割磁感线,公式中的电动势是该时刻的瞬时感应电动势。
②若导体不是垂直切割磁感线运动,v与B有一夹角,如图1:
③若导体在磁场中绕着导体上的某一点转动时
俗话说,磨刀不误砍柴工。作为高中教师就要在上课前做好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,使高中教师有一个简单易懂的教学思路。高中教案的内容要写些什么更好呢?下面是小编为大家整理的“高考物理知识点速查复习机械能、功”,仅供您在工作和学习中参考。
机械能文章来源:http://m.jab88.com/j/71903.html
更多