一名优秀的教师在每次教学前有自己的事先计划,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师提高自己的教学质量。怎么才能让高中教案写的更加全面呢?下面是由小编为大家整理的“高考物理知识点速查复习牛顿第二定律的理解与方法应用”,大家不妨来参考。希望您能喜欢!
牛顿第二定律的理解与方法应用
一、牛顿第二定律的理解。
1、矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
2、瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
3、同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
4、相对性
在中,a是相对于惯性系的而不是相对于非惯性系的即a是相对于没有加速度参照系的。
5、独立性
理解一:F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。
二、方法与应用
1、整体法与隔离法(同体性)
选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。
2、牛顿第二定律瞬时性解题法(瞬时性)
牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。解决这类问题要注意:
(1)确定瞬时加速度的关键是正确确定瞬时合外力。
(2)当指定某个力变化时,是否还隐含着其它力也发生变化。
(3)整体法、隔离法的合力应用。
3、动态分析法
4、正交分解法(独立性)
(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法
(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。
5、结论求解法:结论:物体由竖直圆周的顶点从静止出发,沿不同的光滑直线轨道运动至圆周上另外任一点所用的时间相同。
三、牛顿定律的应用
1、脱离问题
一起运动的两物体发生脱离时,两物体接触,物体间的弹力为零,两物体的速度、加速度相等。
曲线运动、运动的合成与分解、平抛运动
1、深刻理解曲线运动的条件和特点
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:○1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。○3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
2、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:○1分运动的独立性;○2运动的等效性(合运动和分运动是等效替代关系,不能并存);○3运动的等时性;○4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
(3)怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
17、一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:
(1)怎样渡河时间最短?
(2)若VcVs,怎样渡河位移最小?
(3)若VcVs,怎样使船沿河漂下的距离最短?
分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:.
可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,.
(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在VcVs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
船漂的最短距离为:.
此时渡河的最短位移为:.
5、平抛运动
(1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。
(2).平抛运动的处理方法
通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
(3).平抛运动的规律
以抛出点为坐标原点,水平初速度V0方向为沿x轴正方向,竖直向下的方向为y轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.
①位移
分位移,,合位移,.
为合位移与x轴夹角.
②速度
分速度,Vy=gt,合速度,.
为合速度V与x轴夹角
(4).平抛运动的性质
做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。
29、如图4所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)
(1)设击球点在3m线正上方高度为2.5m处,试问击球的速度在什么范围内才能使球即不触网也不越界?
(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?
思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。
解答:(1)如图,设球刚好擦网而过
擦网点x1=3m,y1=h2-h1=2.5-2=0.5m
设球刚好打在边界线上,则落地点x2=12m,y2=h2=2.5m,代入上面速度公式可求得:
欲使球既不触网也不越界,则球初速度v0应满足:
(2)设击球点高度为h3时,球恰好既触网又压线,如图所示。
再设此时排球飞出的初速度为v,对触网点x3=3m,y3=h3-h1=h3-2代入(1)中速度公式可得:
对压界点x4=12m,y4=h3,代入(1)中速度公式可得:
1、2两式联立可得h3=2.13m
即当击球高度小于2.13m时,无论球被水平击出的速度多大,球不是触网,就是出界。
6、圆周运动
线速度、角速度、周期间的关系
皮带传动问题
①皮带上的各点的线速度大小相等
②同一轮子上的各点的角速度相等,周期相等
经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生能够在课堂积极的参与互动,帮助高中教师提前熟悉所教学的内容。那么怎么才能写出优秀的高中教案呢?经过搜索和整理,小编为大家呈现“高三物理教案:《牛顿第二定律的理解与方法应用》教学设计”,欢迎大家与身边的朋友分享吧!
本文题目:高三物理教案:牛顿第二定律的理解与方法应用
牛顿第二定律的理解与方法应用
一、牛顿第二定律的理解。
1、矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
2、瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
3、同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
4、相对性
在 中,a是相对于惯性系的而不是相对于非惯性系的即a是相对于没有加速度参照系的。
5、独立性
理解一:F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为: 。
二、方法与应用
1、整体法与隔离法(同体性)
选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。
2、牛顿第二定律瞬时性解题法(瞬时性)
牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。解决这类问题要注意:
(1)确定瞬时加速度的关键是正确确定瞬时合外力。
(2)当指定某个力变化时,是否还隐含着其它力也发生变化。
(3)整体法、隔离法的合力应用。
3、动态分析法
4、正交分解法(独立性)
(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法
(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。
5、结论求解法:结论:物体由竖直圆周的顶点从静止出发,沿不同的光滑直线轨道运动至圆周上另外任一点所用的时间相同。
三、牛顿定律的应用
1、脱离问题
一起运动的两物体发生脱离时,两物体接触,物体间的弹力为零,两物体的速度、加速度相等。
曲线运动、运动的合成与分解、平抛运动
1、深刻理解曲线运动的条件和特点
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:○1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。○3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
2、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:○1分运动的独立性;○2运动的等效性(合运动和分运动是等效替代关系,不能并存);○3运动的等时性;○4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
(3)怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
17、一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:
(1)怎样渡河时间最短?
(2)若Vc>Vs,怎样渡河位移最小?
(3)若Vc
分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为: .
可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短, .
(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
船漂的最短距离为: .
此时渡河的最短位移为: .
5、平抛运动
(1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。
(2).平抛运动的处理方法
通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
(3).平抛运动的规律
以抛出点为坐标原点,水平初速度V0方向为沿x轴正方向,竖直向下的方向为y轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.
①位移
分位移 , ,合位移 , .
为合位移与x轴夹角.
②速度
分速度 , Vy=gt, 合速度 , .
为合速度V与x轴夹角
(4).平抛运动的性质
做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。
29、如图4所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)
(1)设击球点在3m线正上方高度为2.5m处,试问击球的速度在什么范围内才能使球即不触网也不越界?
(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?
思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。
解答:(1)如图,设球刚好擦网而过
擦网点x1=3m,y1=h2-h1=2.5-2=0.5m
设球刚好打在边界线上,则落地点x2=12m,y2=h2=2.5m,代入上面速度公式可求得:
欲使球既不触网也不越界,则球初速度v0应满足:
(2)设击球点高度为h3时,球恰好既触网又压线,如图所示。
再设此时排球飞出的初速度为v,对触网点x3=3m,y3=h3-h1=h3-2代入(1)中速度公式可得:
对压界点x4=12m,y4=h3,代入(1)中速度公式可得:
、两式联立可得h3=2.13m
即当击球高度小于2.13m时,无论球被水平击出的速度多大,球不是触网,就是出界。
6、圆周运动
线速度、角速度、周期间的关系
皮带传动问题
① 皮带上的各点的线速度大小相等
② 同一轮子上的各点的角速度相等,周期相等。
一、教学目标
1.物理知识方面的要求:
(1)巩固记忆牛顿第二定律内容、公式和物理意义;
(2)掌握牛顿第二定律的应用方法.
2.通过例题分析、讨论、练习使学生掌握应用牛顿定律解决力学问题的方法,培养学生的审题能力、分析综合能力和运用数学工具的能力.
3.训练学生解题规范、画图分析、完善步骤的能力.
二、重点、难点分析
1.本节为习题课,重点内容是选好例题,讲清应用牛顿第二定律解决的两类力学问题及解决这类问题的基本方法.
2.应用牛顿第二定律解题重要的是分析过程、建立图景;抓住运动情况、受力情况和初始条件;依据定律列方程求解.但学生往往存在重结论、轻过程,习惯于套公式得结果,所以培养学生良好的解题习惯、建立思路、掌握方法是难点.
三、教具
投影仪、投影片、彩笔.
四、主要教学过程
(一)引入新课
牛顿第二定律揭示了运动和力的内在联系.因此,应用牛顿第二定律即可解答一些力学问题.
我们通过以下例题来体会应用牛顿第二定律解题的思路、方法和步骤.
(二)教学过程设计
1.已知受力情况求解运动情况
例题1(投影)一个静止在水平面上的物体,质量是2kg,在水平方向受到5.0N的拉力,物体跟水平面的滑动摩擦力是2.0N.
1)求物体在4.0秒末的速度;
2)若在4秒末撤去拉力,求物体滑行时间.
(1)审题分析
这个题目就是根据已知的受力情况来求物体的运动情况.前4秒内运动情况:物体由静止在恒力作用下做匀加速直线运动,t=4.0s.受力情况:F=5.0N,f=2.0N,G=N;初始条件:v0=0;研究对象:m=2.0kg.求解4秒末的速度vt.4秒后,撤去拉力,物体做匀减速运动,v′t=0.受力情况:G=N、f=2.0N;初始条件:v′0=vt,求解滑行时间.
(2)解题思路
研究对象为物体.已知受力,可得物体所受合外力.根据牛顿第二定律可求出物体的加速度,再依据初始条件和运动学公式就可解出前一段运动的末速度.运用同样的思路也可解答后一段运动的滑行距离.
(3)解题步骤(投影)
解:确定研究对象,分析过程(画过程图),进行受力分析(画受力图).
前4秒根据牛顿第二定律列方程:
水平方向
F-f=ma
竖直方向
N-G=0
引导学生总结解题步骤:确定对象、分析过程、受力分析、画图、列方程、求解、检验结果.
(4)讨论:若无第一问如何解?实际第一问的结果是第二问的初始条件,所以解题的过程不变.
(5)引申:这一类题目是运用已知的力学规律,作出明确的预见.它是物理学和技术上进行正确分析和设计的基础,如发射人造地球卫星进入预定轨道,带电粒子在电场中加速后获得速度等都属这一类题目.
2.已知运动情况求解受力情况
例题2(投影)一辆质量为1.0×103kg的小汽车正以10m/s的速度行驶,现在让它在12.5m的距离内匀减速地停下来,求所需的阻力.
(1)审题分析
这个题目是根据运动情况求解汽车所受的阻力.研究对象:汽车m=1.0×103kg;运动情况:匀减速运动至停止vt=0,s=12.5m;初始条件:v0=10m/s,求阻力f.
(2)解题思路
由运动情况和初始条件,根据运动学公式可求出加速度;再根据牛顿第二定律求出汽车受的合外力,最后由受力分析可知合外力即阻力.
(3)解题步骤(投影)
画图分析
据牛顿第二定律列方程:
竖直方面
N-G=0
水平方面
f=ma=1.0×103×(-4)N=-4.0×103N
f为负值表示力的方向跟速度方向相反.
引导学生总结出解题步骤与第一类问题相同.
(5)引申:这一类题目除了包括求出人们熟知的力的大小和方向,还包括探索性运用,即根据观测到的运动去认识人们还不知道的物体间的相互作用的特点.牛顿发现万有引力定律、卢瑟福发现原子内部有个原子核都属于这类探索.
3.应用牛顿第二定律解题的规律分析(直线运动)
题目类型流程如下
由左向右求解即第一类问题,可将vt、v0、s、t中任何一个物理量作为未知求解.
由右向左求解即第二类问题,可将F、f、m中任一物量作为未知求解.
若阻力为滑动摩擦力,则有F-μmg=ma,还可将μ作为未知求解.
如:将例题2改为一物体正以10m/s的速度沿水平面运动,撤去拉力后匀减速滑行2.5m,求物体与水平面间动摩擦因数.
4.物体在斜向力作用下的运动
例题3(投影)一木箱质量为m,与水平地面间的动摩擦因数为μ,现用斜向右下方与水平方向成θ角的力F推木箱,求经过t秒时木箱的速度.
解:(投影)
画图分析:
木箱受4个力,将力F沿运动方向和垂直运动方向分解:
水平分力为
Fcosθ
竖直分力为
Fsinθ
据牛顿第二定律列方程,竖直方向
N-Fsinθ-G=0①
水平方向
Fcosθ-f=ma②
二者联系
f=μN③
由①式得N=Fsinθ+mg代入③式有
f=μ(Fsinθ+mg)
代入②式有Fcosθ-μ(Fsinθ+mg)=ma,得
可见解题方法与受水平力作用时相同.
(三)课堂小结(引导学生总结)
1.应用牛顿第二定律解题可分为两类:一类是已知受力求解运动情况;一类是已知运动情况求解受力.
2.不论哪种类型题目的解决,都遵循基本方法和步骤,即分析过程、建立图景、确定研究对象、进行受力分析、根据定律列方程,进而求解验证效果.在解题过程中,画图是十分重要的,包括运动图和受力图,这对于物体经过多个运动过程的问题更是必不可少的步骤.
3.在斜向力作用下,可将该力沿运动方向和垂直运动方向分解,转化为受水平力的情形.解题方法相同.
五、说明
1.例题1在原题基本上增加了一个运动过程,目的是强调过程图和受力图的重要性.因为有些学生对此不够重视而导致错误,尤其是以后遇到复杂问题的处理时更加突出,比如不注意各段运动中物体受力情况的变化和与之相关的加速度的变化,用前一段运动的加速度代入后一段运动方程进行运算,得出错误结果.但教材中节练习题和章习题中没有这类题目,所以可根据学生情况加以取舍.
2.解题过程反复强调分析方法、解题步骤,意在培养学生的良好解题习惯和书写规范,由于解题过程要力求详尽,故本课密度较大.为此,解题过程可利用投影片以节省时间.
3.例题中增加了斜向力作用的情形,目的是使学生注意竖直方向运动方程的建立,对水平方向物理量的影响.因为学生长时间只考虑水平方向受力,就会忽视了竖直方向的受力分析,认为在任何情况下都无须考虑竖直方向受力.另外,了解到斜向力分解后的解题方法仍是前面所述的基本方法,从而体会对复杂问题的处理方法,以巩固基本知识、基本方法.但不提及建立坐标和正交分解,这一部分亦可据学生情况取舍.
作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要根据教学内容制定合适的教案。教案可以更好的帮助学生们打好基础,使高中教师有一个简单易懂的教学思路。关于好的高中教案要怎么样去写呢?下面是小编精心收集整理,为您带来的《《牛顿第二定律的应用》教学设计》,供您参考,希望能够帮助到大家。
《牛顿第二定律的应用》教学设计文章来源:http://m.jab88.com/j/71823.html
更多