88教案网

2.8(第一课时对数函数的定义、图象和性质)

一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是教师的任务之一。教案可以让学生们能够在上课时充分理解所教内容,帮助教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的教案内容吗?经过搜索和整理,小编为大家呈现“2.8(第一课时对数函数的定义、图象和性质)”,仅供参考,欢迎大家阅读。

2.8(第一课时对数函数的定义、图象和性质)

教学目的:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系;

2.会求对数函数的定义域;

3.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。教学重点:对数函数的定义、图象、性质

教学难点:对数函数与指数函数间的关系.

教学形式:计算机辅助教学

教学过程:

一、复习引入:

对于函数=,根据对数的定义,可以写成对数的形式,就是

如果用表示自变量,表示函数,这个函数就是

由反函数概念可知,与指数函数互为反函数。

二、新授内容:

1.对数函数的定义:

函数叫做对数函数;它是指数函数的反函数。

对数函数的定义域为,值域为。

2.对数函数的图象

由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

3.对数函数的性质

先回顾指数函数的图象和性质。

a1

0a1

1.定义域

R

2.值域

(0,+∞)

3.过定点

(0,1),即x=0时,y=1

4.函数值分布

x0时,y1;

x0时,0y1

x0时,0y1;

x0时,y1.

5.单调性

在R上是增函数

在R上是减函数由由反函数的性质和对数函数的图象,观察得出对数函数的性质.

a1

0a1

1.定义域

(0,+∞)

2.值域

R

3.过定点

(1,0),即x=1时,y=0

4.函数值分布

x1时,y0;

0x1时,y0

0x1时,y0;

x1时,y0.

5.单调性

在(0,+∞)上是增函数

在(0,+∞)上是减函数三、例题:

例1求下列函数的定义域:[(1)—(3)课本P83例1]

(1);(2);(3)

(4)

解:(4)

故函数的定义域为(0,1).

例2求下列函数的反函数

(1)(2)

解:(1)∴

(2)∴

四、练习:

1.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.

解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.

不同性质:y=x的图象是上升的曲线,y=的图象是下降的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.

2.求下列函数的定义域:

(1)y=(1-x)(2)y=

(3)y=

五、作业:习题2.81,2

延伸阅读

对数函数的概念与图象


2.2.2对数函数的概念与图象
一、内容与解析
(一)内容:对数函数的概念与图象
(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.教学的重点是对数函数的图象特点与画法,解决重点的关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。
二、教学目标及解析
(一)教学目标:
1,理解对数函数的概念;掌握对数函数的图象的特点及画法。
2,通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图象的画法逐步认识对数函数的特征;
3,培养学生运用类比方法探索研究数学问题的素养,提高学生分析问题、解决问题的能力。

(二)解析:
1,理解对数函数的概念是来源于实践的,能从函数概念的角度阐述其意义;掌握对数函数的图象和性质,做到能画草图,能分析图象,能从图象观察得出对数函数的单调性、值域、定点等;了解同底指数函数和对数函数互为反函数,能说出它们的图象之间的关系,知道它们的定义域和值域之间的关系,了解反函数带有逆运算的意味;
2,通过具体的实例,归纳得出一般的函数图象特征,并能够通过图象特征得到相应的函数特征,培养学生的作图、识图的能力和归纳总结能力;
3,类比指数函数的图象和性质的研究方法,来研究对数函数,让学生认识到研究问题的方法上的一般性;同时,让学生认识到类比这一数学思想,即对相似的问题可以借鉴之前问题的研究方法来研究,有助于提高学生分析问题、解决问题的能力。
三、问题诊断分析
本节课容易出现的问题是:对数函数的图象特点的探究容易出现图象不对、归纳不全、有所偏差等情形。出现这一问题的原因是:学生作图能力、识图能力、归纳能力不强。要解决这一问题,教师要通过让学生类比指数函数图象和性质的探究,时时回过头看看之前是怎么做的,考虑了哪些问题,得到了哪些结论,让学生类比自主探究,必要时给予适当引导,让学生自主的得出结论,对于出错的地方要让学生讨论,教师做出适当的评价并最终给出结论。

四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程
问题1.前面我们已经掌握了指数函数的概念、图象与性质,知道了指数函数是基本初等函数之一。现在学习的对数,也可以构成一种函数,我们称之为对数函数,那么什么样的函数称为对数函数呢?
[设计意图]新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点
小问题串
1.2.2.1的例6,考古学家是如何估算出土文物或古遗址的年代的?这种对应关系是否形成函数关系?
2.某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个……。怎么求?相应的对应关系是否也形成函数关系?
3.由上述两个实例,请你类比指数函数的概念归纳对数函数的概念
观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数.○2对数函数对底数的限制:,且.
4.根据对数函数定义填空;
例1(1)函数y=logax2的定义域是___________(其中a0,a≠1)
(2)函数y=loga(4-x)的定义域是___________(其中a0,a≠1)
说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。

问题2.对数函数的图象是什么样?有什么特点呢?
[设计意图]旧教材是通过对称变换直接从指数函数的图象得到对数函数图象,这样处理学生虽然会接受了这个事实,但对图象的感觉是肤浅的;这样处理也存在着函数教学忽视图象、性质的认知过程而注重应用的“功利”思想。因此,本节课的设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。这个环节,还要借助计算机辅助教学作用,增强学生的直观感受
小问题串
1.(1)用描点法在同一坐标系中画出下列对数函数的图象
(2)用描点法在同一坐标系中画出下列对数函数的图象

2.观察对数函数、与、的图象特征,看看它们有那些异同点。
3.利用计算器或计算机,选取底数,且的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
4.归纳出能体现对数函数的代表性图象,并说明以后如何画对数函数的简图。

例题
1.课本P75A组第10题
2.求函数的定义域,并画出函数的图象。

六、目标检测
求下列函数的定义域
(1);
(2);
(3)
画函数的图象

对数函数的概念和性质


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生能够听懂教师所讲的内容,减轻高中教师们在教学时的教学压力。你知道如何去写好一份优秀的高中教案呢?下面是由小编为大家整理的“对数函数的概念和性质”,仅供参考,大家一起来看看吧。

2.2.2.1对数函数的概念和性质
四、教学过程设计
问题一:阅读材料,结合教材第70页对数函数的内容,完成所给的问题
材料一:用清水漂洗衣服时,若每次能够洗去衣服污垢的,那么你能写出存留污垢表示的漂洗次数的关系式吗?
材料二:教材第70页第一段的例子
1你能否根据材料中的的函数关系式,给出一个一般性的概念?
2如何判断一个函数是对数函数?你能仿照判断指数函数一样,给出一个步骤吗?
结论:1根据材料中的式子,,,我们只用把其中的换成a,就成了一般性的结论,也就是对数函数的定义:一般地,我们把函数叫做对数函数,其中x是自变量,函数的定义域是.
2只有形如的函数叫做对数函数.即对数符号前面的系数为1,底数是正常数,真数是x的形式才叫对数函数,譬如:,,等等都不叫对数函数.
问题二:阅读教材第71页有关对数函数性质的知识,回答问题
3请你运用列表、描点、连线的方法在同一坐标系中画出函数、的图像
4观察所画出的对数函数图像,你能总结出对数函数的性质吗?
5请同学们仔细的观察图像,找出、两个函数图像的关系.
结论:3图像如下图所示,我们可以观察它的图像的特征.
4一般地,对数函数的图像性和质如下表所示:
5我们可以很容易的观察出,两个函数是关于x轴对称的.
引申:你能自己证明出来结论5吗?请同学们试着证明一下.
问题三:练习与巩固
请同学们自学教材第71页例7,然后完成下面练习
练习一:1对于例7,你能受到什么启发?能很顺利的理解例7吗?请归纳一下对于例7这种类型题,我们要注意的是什么?
2教材第73页练习2
请同学们自学教材第72页例9,然后完成练习二
练习二:请你讲一讲你对例9的理解.同学们需要注意的是,我们所学习的知识,都是为了应用到实际的生活中,所以希望同学们具备理论联系实际的思考能力.
思考:求证函数是奇函数。
五.课堂目标检测
优化设计:随堂练习.
六、小结
这节课我们主要讲了函数的图像和函数的基本性质,事实上,这一节课是由函数的图像推导出函数的基本性质的.这一节课老师们要完成的任务是对学生进行数形结合的思想的渗透,和从一般到特殊的归纳的数学思想的渗透.其中数学思想的渗透也是我们学习数学的一大任务,若是没有数学思想,那么我们的数学就像是一盘散沙,学生是不可能把它们串联起来的.所以我们老师一定要先形成良好的数学思想,然后才能向学生渗透.这一个渗透工作要持续在每一堂课中,我们不能奢望找个时间突击一下学生就会了,要循序渐进.这一节课我们还有注意对函数定义域的求解,这是函数的一大块内容.
七.配餐作业

《对数函数的图像和性质》教案


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生更好地进入课堂环境中来,帮助高中教师能够更轻松的上课教学。怎么才能让高中教案写的更加全面呢?小编为此仔细地整理了以下内容《《对数函数的图像和性质》教案》,希望能对您有所帮助,请收藏。

《对数函数的图像和性质》教案

一、设计思路

指导思想

数学是一门具有严密推理能力和抽象概括能力的学科。本课以发展学生思维能力为核心,以学生发展为本,从本班学生的实际出发,培养学生观察能力,探究能力和抽象概括能力。

教材分析

本节课是学生在已知函数概念,并且已经掌握了函数的一般性质和简单的对数运算性质的基础上,进一步研究一类具体函数——对数函数,深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步学习函数的知识打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

教学目标

1、知识目标:理解对数函数的定义,掌握对数函数的图像、性质及其简单应用

2、能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,以及从特殊到一般等学习数学的方法,并体会数形结合思想

3、情感目标:通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

教学重点

通过对对数函数图像的的探究,得出的对数函数图像及其性质,以及图像和性质的简单应用,是本节课的重点。

教学难点

1.底数a的变化对对数函数图像及性质的有较大的影响,是本节课的一大难点。

2.底数不同时,如何比较两个对数的大小是本节课的又一个难点

教学准备

1、认真研究教材,与同课头老师探讨教学思路,听取有经验老师的意见!。

2、精心制作PPT课件和几何画板课件辅助教学。

3、安排学生预习。

教学过程设计

一.复习提问,引入新课

师:对数函数的概念?定义域是什么?

生:一般地,函数,(a0且a≠1)叫做对数函数,其中定义域是(0,+∞)

师:对数的运算性质有哪些?

生:(1);

(2);

(3).

(4)对数的换底公式

(,且,,且,)

设计思路:从对数函数概念以及对运算性质引出课题,寻找学习最近发展区,为后面研究对数函数的图象和性质埋下了伏笔。

二.性质探究

1.探究一:对数函数的图像

操作1:同指数函数一样,在学习了函数定义之后,我们要画函数的图象。

在同一坐标系内画出函数和的图象。

师:画函数都有哪些步骤呢?

生:列表、描点、连线。

(学生动手画图后,教师利用多媒体演示画图过程)

x

1/4

1/2

1

2

4

8

-2

-1

0

1

2

3

y=log0.5x

2

1

0

-1

-2

-3

操作2:继续在同一坐标系中,画出下列函数图像

设计思路:通过描点法在同一坐标画出不同底数函数的图像,既有利于培养学生的动手能力,又有利于学生感知对数函数的图像的变化规律。

2.探究二

师:老师布置学习任务和组织学生探究:

请各小组根据同一坐标系中所画底数不同时对数函数的图像,归纳总结出对数函数具有哪些性质?最终请各小组派代表起来汇报本小组的探究结果。

生:各小组积极探讨,把发现的性质归纳总结,记录下来。其中重点包含(但不限于)如下内容:

v定义域与值域分别是什么

v当底数a变化时,对数函数图像如何变化?

v经过哪个定点?

vy=logax与y=图像有什么关系

v函数的单调性?

v函数的奇偶性?

v函数值何时取正值,何时取负值?

设计思路:小组探究,有利于培养学生合作意识和团队精神;开放式的探究,更有利于培养学生观察能力以及发现问题,提出问题能力。

三.成果展示

师:教师轮流要求各小组派代表展示本组所发现对数函数的所有性质,其它队员可以补充,并对学生的精彩回答加以肯定;如果发现了新问题,鼓励学生继续讨论。

生:

通过学生的观察、探究和发现,以及各组的成果展示,将对数函数的图像性质,归结总结如下(各性质尽可能由学生总结):

a>1

0<a<1

0

(1,0)

定义域

(0,+∞);

值域

R

渐近线

图象都在y轴的右方,以作为渐近线

定点

图象都经过(1,0)点,即x=1时,y=0

底数变化规律

在第一象限,图像从左向右,底数a增大

底数a逆时针增大

奇偶性

对数函数为非奇非偶函数

对称性

y=logax与y=log1/ax图像关于x轴对称

单调性

当a>1时,图象呈上升趋势,

为增函数

当0<a<1时,图像呈下降趋势,为减函数

正负性

当a>1时,若0<x<1,则y<0,若x>1,则y>0;

当0<a<1时,若0<x<1,

则y>0,若x>1,则y<0

师:通过几何画板软件,对部分性质进行验证。

设计思路:通过成果展示,培养学生的团队合作精神,以及抽象概括辐射能和口头表达能力!

探究三:判断下列各对数值的正负,有什么规律?

值为正的有:(1)(2)(3)(4)

值为负的有:(5)(6)(7)(8)

师:根据上述探究,请学生总结规律!

规律总结:设a,b∈(0,1)∪(1,+∞),则logab与0的大小规律是:

(1)当a,b同时大于1或同小于1时,logab0;

(2)当a,b一个大于1另一个小于1时,logab0。

设计思路:进一步激发学生的问题意识和探索精神,培养学生的概括能力。

四.性质应用

例1.求下列函数的定义域:

(1);(2);.

分析:此题主要利用对数函数的定义域(0,+∞)求解.

解:(1)由0得,∴函数的定义域是;

(2)由得,∴函数的定义域是;

设计意图:加强学生对定义域的理解

例2:比较下列各组中两个数的大小:

(1);;

解:考查对数函数,因为它的底数21,所以它在(0,+∞)上是增函数,于是.

考查对数函数,因为它的底数00.31,所以它在(0,+∞)上是减函数,于是.

当时,在(0,+∞)上是增函数,于是;

当时,在(0,+∞)上是减函数,于是

练习1:比较下列各组对数的大小

(1)log27与log37;

(2)

(3)

(4)log3π与log20.8

解:(1)、(2)如图log27log37,

(3)log67>log66=1

log76<log77=1

∴log67>log76

(4)log3π>log31=0

log20.8<log21=0

∴log3π>log20.

归纳总结:比较两个对数式的大小的方法

a)底数相同:可由对数函数的单调性直接进行判断.

b)底数不同,真数相同:可用不同底时图像的高低性判断.(也可用换底公式)

c)底数、真数都不相同:常借助1、0、-1等中间量进行比较

d)底数不确定时,必须讨论

e)灵活运用公式,将等价转化后再比较

设计意图:加强学生对函数的图像及性质的的理解,并渗透数形结合思想。

五.拓展提高

思考:在同一个坐标内分别作出下列函数图象

(1)y=2x和y=log2x(2)y=0.5x和y=log0.5x

师:从图象中你能发现两个函数的图象间有什么关系?

生:函数y=ax与y=logax图象关于y=x对称

师:推广,函数y=f(x)与反函数y=f-1(x)图象关于y=x对称

设计意图:拓展知识,进一步理解反函数的概念

六、课堂小结

1.正确理解对数函数的定义;

2.掌握对数函数的图象和性质;

3.能利用对数函数的性质解决有关问题。

4.比较两个对数式的大小关系的哪些方法。

对数函数的性质


总课题对数函数分课时第5课时总课时总第33课时
分课题对数函数的性质课型新授课
教学目标熟悉对数函数的图象和性质,会用对数函数的性质求一些与对数函数有关的复合函数的单调区间;对数形式函数单调区间及值域的求法。
重点对数函数的图象的变换。
难点对数函数的图象的变换。
一、复习引入
1、对数函数的概念及其与指数函数的关系

2、对数函数的图象及性质

3、与对数有关的复合函数及其性质

4、课前练习
(1)已知,则的大小。

(2)函数且恒过定点。
(3)将函数的图象向得到函数的图象;
将明函数的图象向得到函数的图象。
(4)函数的定义域为,求的反函数的定义域与值域分别。

二、例题分析
例1、画出函数的图象,并根据图象写出函数的单调区间。

例2、比较与图像的关系,并讨论函数与之间的关系。

变式:画出的图像,并利用函数图像求函数的值域及单调区间。

例3、判断函数的单调性,并证明。

例4、求函数在上的最值。

三、随堂练习
1、已知函数,,,的图象如图所示,
则下式中正确的是。
(1)(2)
(3)(4)
2、函数的奇偶性是。
3、在同一坐标系中作出下列函数的图像。
(1)(2)

四、回顾小结
1、函数图像的作法;2、对数形式函数单调区间及值域的求法。
课后作业
班级:高一()班姓名__________
一、基础题
1、若函数,则的大小关系为。
2、函数的单调递增区间是_______________________。
3、下列函数在上为增函数是___________________。
(1)(2)(3)(4)
4、函数的定义域是。

二、提高题
5、已知函数。
(1)求的定义域;(2)判断的奇偶性,并证明。

6、作出下列函数的图像,并写出函数的单调区间:
(1)(2)

三、能力题
7、对于任意,若函数,试比较与的大小。

8、已知,,求的最大值及取最大值时的值。

探究:关于的两方程,的根分别是,求的值。(图象法)
得分:____________________

文章来源:http://m.jab88.com/j/18645.html

更多

最新更新

更多