88教案网

对数函数的性质

一名优秀的教师就要对每一课堂负责,准备好一份优秀的教案往往是必不可少的。教案可以让学生能够听懂教师所讲的内容,有效的提高课堂的教学效率。怎么才能让教案写的更加全面呢?以下是小编为大家精心整理的“对数函数的性质”,仅供参考,大家一起来看看吧。

总课题对数函数分课时第5课时总课时总第33课时
分课题对数函数的性质课型新授课
教学目标熟悉对数函数的图象和性质,会用对数函数的性质求一些与对数函数有关的复合函数的单调区间;对数形式函数单调区间及值域的求法。
重点对数函数的图象的变换。
难点对数函数的图象的变换。
一、复习引入
1、对数函数的概念及其与指数函数的关系

2、对数函数的图象及性质

3、与对数有关的复合函数及其性质

4、课前练习
(1)已知,则的大小。

(2)函数且恒过定点。
(3)将函数的图象向得到函数的图象;
将明函数的图象向得到函数的图象。
(4)函数的定义域为,求的反函数的定义域与值域分别。

二、例题分析
例1、画出函数的图象,并根据图象写出函数的单调区间。

例2、比较与图像的关系,并讨论函数与之间的关系。

变式:画出的图像,并利用函数图像求函数的值域及单调区间。

例3、判断函数的单调性,并证明。

例4、求函数在上的最值。

三、随堂练习
1、已知函数,,,的图象如图所示,
则下式中正确的是。
(1)(2)
(3)(4)
2、函数的奇偶性是。
3、在同一坐标系中作出下列函数的图像。
(1)(2)

四、回顾小结
1、函数图像的作法;2、对数形式函数单调区间及值域的求法。
课后作业
班级:高一()班姓名__________
一、基础题
1、若函数,则的大小关系为。
2、函数的单调递增区间是_______________________。
3、下列函数在上为增函数是___________________。
(1)(2)(3)(4)
4、函数的定义域是。

二、提高题
5、已知函数。
(1)求的定义域;(2)判断的奇偶性,并证明。

6、作出下列函数的图像,并写出函数的单调区间:
(1)(2)

三、能力题
7、对于任意,若函数,试比较与的大小。

8、已知,,求的最大值及取最大值时的值。

探究:关于的两方程,的根分别是,求的值。(图象法)
得分:____________________

相关阅读

对数函数的性质的应用


经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“对数函数的性质的应用”,欢迎大家与身边的朋友分享吧!

2.2.2对数函数的性质的应用(2)
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
1.对数函数的性质:
a10a1



质定义域:
值域:
过点(,),即当时,




在(,)上是增函数在(,)上是减函数
2.函数恒过的定点坐标是()
A.B.C.D.
3.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.

课内探究学案
一、学习目标
1.使学生理解对数函数的定义,进一步掌握对数函数的图像和性质
2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
教学重点:对数函数的图像和性质
教学难点:底数a的变化对函数性质的影响
二、学习过程
探究点一
例1求下列函数的定义域:
(1);(2);(3)
解析:利用对数函数的定义域解.
解:略
点评:本题主要考察了利用函数的定义域.
探究点二
例2.比较大小
1.,,2.
解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.

探究点三
例3求下列函数的反函数
①②
解析:利用对数函数与指数函数互为反函数解.
解:略
点评:本题主要考察了反函数的解法.

三、反思总结

四、当堂检测
1.求下列函数的定义域:
(1)y=(1-x)(2)y=
(3)y=
2.若求实数的取值范围

课后练习与提高
1、函数的定义域是()
A、B、
C、D、
2、函数的值域是()
A、B、C、D、
3、若,那么满足的条件是()
A、B、C、D、
4、已知函数,判断的奇偶性和单调性。

对数函数的概念和性质


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生能够听懂教师所讲的内容,减轻高中教师们在教学时的教学压力。你知道如何去写好一份优秀的高中教案呢?下面是由小编为大家整理的“对数函数的概念和性质”,仅供参考,大家一起来看看吧。

2.2.2.1对数函数的概念和性质
四、教学过程设计
问题一:阅读材料,结合教材第70页对数函数的内容,完成所给的问题
材料一:用清水漂洗衣服时,若每次能够洗去衣服污垢的,那么你能写出存留污垢表示的漂洗次数的关系式吗?
材料二:教材第70页第一段的例子
1你能否根据材料中的的函数关系式,给出一个一般性的概念?
2如何判断一个函数是对数函数?你能仿照判断指数函数一样,给出一个步骤吗?
结论:1根据材料中的式子,,,我们只用把其中的换成a,就成了一般性的结论,也就是对数函数的定义:一般地,我们把函数叫做对数函数,其中x是自变量,函数的定义域是.
2只有形如的函数叫做对数函数.即对数符号前面的系数为1,底数是正常数,真数是x的形式才叫对数函数,譬如:,,等等都不叫对数函数.
问题二:阅读教材第71页有关对数函数性质的知识,回答问题
3请你运用列表、描点、连线的方法在同一坐标系中画出函数、的图像
4观察所画出的对数函数图像,你能总结出对数函数的性质吗?
5请同学们仔细的观察图像,找出、两个函数图像的关系.
结论:3图像如下图所示,我们可以观察它的图像的特征.
4一般地,对数函数的图像性和质如下表所示:
5我们可以很容易的观察出,两个函数是关于x轴对称的.
引申:你能自己证明出来结论5吗?请同学们试着证明一下.
问题三:练习与巩固
请同学们自学教材第71页例7,然后完成下面练习
练习一:1对于例7,你能受到什么启发?能很顺利的理解例7吗?请归纳一下对于例7这种类型题,我们要注意的是什么?
2教材第73页练习2
请同学们自学教材第72页例9,然后完成练习二
练习二:请你讲一讲你对例9的理解.同学们需要注意的是,我们所学习的知识,都是为了应用到实际的生活中,所以希望同学们具备理论联系实际的思考能力.
思考:求证函数是奇函数。
五.课堂目标检测
优化设计:随堂练习.
六、小结
这节课我们主要讲了函数的图像和函数的基本性质,事实上,这一节课是由函数的图像推导出函数的基本性质的.这一节课老师们要完成的任务是对学生进行数形结合的思想的渗透,和从一般到特殊的归纳的数学思想的渗透.其中数学思想的渗透也是我们学习数学的一大任务,若是没有数学思想,那么我们的数学就像是一盘散沙,学生是不可能把它们串联起来的.所以我们老师一定要先形成良好的数学思想,然后才能向学生渗透.这一个渗透工作要持续在每一堂课中,我们不能奢望找个时间突击一下学生就会了,要循序渐进.这一节课我们还有注意对函数定义域的求解,这是函数的一大块内容.
七.配餐作业

对数函数的图像与性质


4.6对数函数的图像与性质(1)
案例背景
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生):是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由得.又的值域为,
所求反函数为.
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书)定义:函数的反函数叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.
具体操作时,要求学生做到:
(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2)画出直线.
(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3.性质
(1)定义域:
(2)值域:
由以上两条可说明图像位于轴的右侧.
(3)图像恒过(1,0)
(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
(5)单调性:与有关.当时,在上是增函数.即图像是上升的
当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1.研究相关函数的性质
例1.求下列函数的定义域:
(1)(2)(3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2.利用单调性比较大小
例2.比较下列各组数的大小
(1)与;(2)与;
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若,求的取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

《对数函数的图像和性质》教案


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生更好地进入课堂环境中来,帮助高中教师能够更轻松的上课教学。怎么才能让高中教案写的更加全面呢?小编为此仔细地整理了以下内容《《对数函数的图像和性质》教案》,希望能对您有所帮助,请收藏。

《对数函数的图像和性质》教案

一、设计思路

指导思想

数学是一门具有严密推理能力和抽象概括能力的学科。本课以发展学生思维能力为核心,以学生发展为本,从本班学生的实际出发,培养学生观察能力,探究能力和抽象概括能力。

教材分析

本节课是学生在已知函数概念,并且已经掌握了函数的一般性质和简单的对数运算性质的基础上,进一步研究一类具体函数——对数函数,深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步学习函数的知识打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

教学目标

1、知识目标:理解对数函数的定义,掌握对数函数的图像、性质及其简单应用

2、能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,以及从特殊到一般等学习数学的方法,并体会数形结合思想

3、情感目标:通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

教学重点

通过对对数函数图像的的探究,得出的对数函数图像及其性质,以及图像和性质的简单应用,是本节课的重点。

教学难点

1.底数a的变化对对数函数图像及性质的有较大的影响,是本节课的一大难点。

2.底数不同时,如何比较两个对数的大小是本节课的又一个难点

教学准备

1、认真研究教材,与同课头老师探讨教学思路,听取有经验老师的意见!。

2、精心制作PPT课件和几何画板课件辅助教学。

3、安排学生预习。

教学过程设计

一.复习提问,引入新课

师:对数函数的概念?定义域是什么?

生:一般地,函数,(a0且a≠1)叫做对数函数,其中定义域是(0,+∞)

师:对数的运算性质有哪些?

生:(1);

(2);

(3).

(4)对数的换底公式

(,且,,且,)

设计思路:从对数函数概念以及对运算性质引出课题,寻找学习最近发展区,为后面研究对数函数的图象和性质埋下了伏笔。

二.性质探究

1.探究一:对数函数的图像

操作1:同指数函数一样,在学习了函数定义之后,我们要画函数的图象。

在同一坐标系内画出函数和的图象。

师:画函数都有哪些步骤呢?

生:列表、描点、连线。

(学生动手画图后,教师利用多媒体演示画图过程)

x

1/4

1/2

1

2

4

8

-2

-1

0

1

2

3

y=log0.5x

2

1

0

-1

-2

-3

操作2:继续在同一坐标系中,画出下列函数图像

设计思路:通过描点法在同一坐标画出不同底数函数的图像,既有利于培养学生的动手能力,又有利于学生感知对数函数的图像的变化规律。

2.探究二

师:老师布置学习任务和组织学生探究:

请各小组根据同一坐标系中所画底数不同时对数函数的图像,归纳总结出对数函数具有哪些性质?最终请各小组派代表起来汇报本小组的探究结果。

生:各小组积极探讨,把发现的性质归纳总结,记录下来。其中重点包含(但不限于)如下内容:

v定义域与值域分别是什么

v当底数a变化时,对数函数图像如何变化?

v经过哪个定点?

vy=logax与y=图像有什么关系

v函数的单调性?

v函数的奇偶性?

v函数值何时取正值,何时取负值?

设计思路:小组探究,有利于培养学生合作意识和团队精神;开放式的探究,更有利于培养学生观察能力以及发现问题,提出问题能力。

三.成果展示

师:教师轮流要求各小组派代表展示本组所发现对数函数的所有性质,其它队员可以补充,并对学生的精彩回答加以肯定;如果发现了新问题,鼓励学生继续讨论。

生:

通过学生的观察、探究和发现,以及各组的成果展示,将对数函数的图像性质,归结总结如下(各性质尽可能由学生总结):

a>1

0<a<1

0

(1,0)

定义域

(0,+∞);

值域

R

渐近线

图象都在y轴的右方,以作为渐近线

定点

图象都经过(1,0)点,即x=1时,y=0

底数变化规律

在第一象限,图像从左向右,底数a增大

底数a逆时针增大

奇偶性

对数函数为非奇非偶函数

对称性

y=logax与y=log1/ax图像关于x轴对称

单调性

当a>1时,图象呈上升趋势,

为增函数

当0<a<1时,图像呈下降趋势,为减函数

正负性

当a>1时,若0<x<1,则y<0,若x>1,则y>0;

当0<a<1时,若0<x<1,

则y>0,若x>1,则y<0

师:通过几何画板软件,对部分性质进行验证。

设计思路:通过成果展示,培养学生的团队合作精神,以及抽象概括辐射能和口头表达能力!

探究三:判断下列各对数值的正负,有什么规律?

值为正的有:(1)(2)(3)(4)

值为负的有:(5)(6)(7)(8)

师:根据上述探究,请学生总结规律!

规律总结:设a,b∈(0,1)∪(1,+∞),则logab与0的大小规律是:

(1)当a,b同时大于1或同小于1时,logab0;

(2)当a,b一个大于1另一个小于1时,logab0。

设计思路:进一步激发学生的问题意识和探索精神,培养学生的概括能力。

四.性质应用

例1.求下列函数的定义域:

(1);(2);.

分析:此题主要利用对数函数的定义域(0,+∞)求解.

解:(1)由0得,∴函数的定义域是;

(2)由得,∴函数的定义域是;

设计意图:加强学生对定义域的理解

例2:比较下列各组中两个数的大小:

(1);;

解:考查对数函数,因为它的底数21,所以它在(0,+∞)上是增函数,于是.

考查对数函数,因为它的底数00.31,所以它在(0,+∞)上是减函数,于是.

当时,在(0,+∞)上是增函数,于是;

当时,在(0,+∞)上是减函数,于是

练习1:比较下列各组对数的大小

(1)log27与log37;

(2)

(3)

(4)log3π与log20.8

解:(1)、(2)如图log27log37,

(3)log67>log66=1

log76<log77=1

∴log67>log76

(4)log3π>log31=0

log20.8<log21=0

∴log3π>log20.

归纳总结:比较两个对数式的大小的方法

a)底数相同:可由对数函数的单调性直接进行判断.

b)底数不同,真数相同:可用不同底时图像的高低性判断.(也可用换底公式)

c)底数、真数都不相同:常借助1、0、-1等中间量进行比较

d)底数不确定时,必须讨论

e)灵活运用公式,将等价转化后再比较

设计意图:加强学生对函数的图像及性质的的理解,并渗透数形结合思想。

五.拓展提高

思考:在同一个坐标内分别作出下列函数图象

(1)y=2x和y=log2x(2)y=0.5x和y=log0.5x

师:从图象中你能发现两个函数的图象间有什么关系?

生:函数y=ax与y=logax图象关于y=x对称

师:推广,函数y=f(x)与反函数y=f-1(x)图象关于y=x对称

设计意图:拓展知识,进一步理解反函数的概念

六、课堂小结

1.正确理解对数函数的定义;

2.掌握对数函数的图象和性质;

3.能利用对数函数的性质解决有关问题。

4.比较两个对数式的大小关系的哪些方法。

文章来源:http://m.jab88.com/j/12314.html

更多

最新更新

更多