作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生能够听懂教师所讲的内容,减轻高中教师们在教学时的教学压力。你知道如何去写好一份优秀的高中教案呢?下面是由小编为大家整理的“对数函数的概念和性质”,仅供参考,大家一起来看看吧。
2.2.2.1对数函数的概念和性质总课题对数函数分课时第5课时总课时总第33课时
分课题对数函数的性质课型新授课
教学目标熟悉对数函数的图象和性质,会用对数函数的性质求一些与对数函数有关的复合函数的单调区间;对数形式函数单调区间及值域的求法。
重点对数函数的图象的变换。
难点对数函数的图象的变换。
一、复习引入
1、对数函数的概念及其与指数函数的关系
2、对数函数的图象及性质
3、与对数有关的复合函数及其性质
4、课前练习
(1)已知,则的大小。
(2)函数且恒过定点。
(3)将函数的图象向得到函数的图象;
将明函数的图象向得到函数的图象。
(4)函数的定义域为,求的反函数的定义域与值域分别。
二、例题分析
例1、画出函数的图象,并根据图象写出函数的单调区间。
例2、比较与图像的关系,并讨论函数与之间的关系。
变式:画出的图像,并利用函数图像求函数的值域及单调区间。
例3、判断函数的单调性,并证明。
例4、求函数在上的最值。
三、随堂练习
1、已知函数,,,的图象如图所示,
则下式中正确的是。
(1)(2)
(3)(4)
2、函数的奇偶性是。
3、在同一坐标系中作出下列函数的图像。
(1)(2)
四、回顾小结
1、函数图像的作法;2、对数形式函数单调区间及值域的求法。
课后作业
班级:高一()班姓名__________
一、基础题
1、若函数,则的大小关系为。
2、函数的单调递增区间是_______________________。
3、下列函数在上为增函数是___________________。
(1)(2)(3)(4)
4、函数的定义域是。
二、提高题
5、已知函数。
(1)求的定义域;(2)判断的奇偶性,并证明。
6、作出下列函数的图像,并写出函数的单调区间:
(1)(2)
三、能力题
7、对于任意,若函数,试比较与的大小。
8、已知,,求的最大值及取最大值时的值。
探究:关于的两方程,的根分别是,求的值。(图象法)
得分:____________________
作为老师的任务写教案课件是少不了的,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,才能更好的在接下来的工作轻装上阵!你们清楚教案课件的范文有哪些呢?以下是小编为大家收集的“对数函数及其性质”仅供参考,希望能为您提供参考!
§2.2.2对数函数及其性质(1)
学习目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.
旧知提示
复习:若,则,其中称为,其范围为,称为.
合作探究(预习教材P70-P72,找出疑惑之处)
探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为,剪的次数为,试用表示.
新知:对数函数的概念
试一试:以下函数是对数函数的是()
A.B.C.D.E.
反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且.
探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?
研究方法:画出函数图象,结合图象研究函数性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
作图:在同一坐标系中画出下列对数函数的图象.
;
新知:对数函数的图象和性质:
象
定义域
值域
过定点
单调性
思考:当时,时,;时,;
当时,时,;时,.
典型例题
例1求下列函数的定义域:(1);(2).
例2比较大小:
(1);(2);(3);(4)与.
课堂小结
1.对数函数的概念、图象和性质;
2.求定义域;
3.利用单调性比大小.
知识拓展
对数函数凹凸性:函数,是任意两个正实数.
当时,;当时,.
学习评价
1.函数的定义域为()
A.B.C.D.
2.函数的定义域为()
A.B.C.D.
3.函数的定义域是.
4.比较大小:
(1)log67log76;(2);(3).
课后作业
1.不等式的解集是().
A.B.C.D.
2.若,则()
A.B.C.D.
3.当a1时,在同一坐标系中,函数与的图象是().
4.已知函数的定义域为,函数的定义域为,则有()
A.B.C.D.
5.函数的定义域为.
6.若且,函数的图象恒过定点,则的坐标是.
7.已知,则=.
8.求下列函数的定义域:
§2.2.2对数函数及其性质(2)
学习目标
1.解对数函数在生产实际中的简单应用;2.进一步理解对数函数的图象和性质;
3.学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.
旧知提示
复习1:对数函数图象和性质.
a10a1
图
性
质(1)定义域:
(2)值域:
(3)过定点:
(4)单调性:
复习2:比较两个对数的大小:(1);(2).
复习3:(1)的定义域为;
(2)的定义域为.
复习4:右图是函数,,,的图象,则底数之间的关系为.
合作探究(预习教材P72-P73,找出疑惑之处)
探究:如何由求出x?
新知:反函数
试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?
反思:
(1)如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?
(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.
典型例题
例1求下列函数的反函数:
(1);(2).
提高:①设函数过定点,则过定点.
②函数的反函数过定点.
③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为.
小结:求反函数的步骤(解x→习惯表示→定义域)
例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.
(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?
(2)纯净水摩尔/升,计算其酸碱度.
例3求下列函数的值域:(1);(2).
课堂小结
①函数模型应用思想;②反函数概念.
知识拓展
函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应.对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数.反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.
学习评价
1.函数的反函数是().
A.B.C.D.
2.函数的反函数的单调性是().
A.在R上单调递增B.在R上单调递减
C.在上单调递增D.在上单调递减
3.函数的反函数是().
A.B.C.D.
4.函数的值域为().
A.B.C.D.
5.指数函数的反函数的图象过点,则a的值为.
6.点在函数的反函数图象上,则实数a的值为.
课后作业
1.函数的反函数为()
A.B.C.D.
2.设,,,,则的大小关系是()
A.B.C.D.
3.的反函数为.
4.函数的值域为.
5.已知函数的反函数图象经过点,则.
6.设,则满足的值为.
7.求下列函数的反函数.
(1)y=;(2)y=(a>0,a≠1,x>0);(3).
经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“对数函数的性质的应用”,欢迎大家与身边的朋友分享吧!
2.2.2对数函数的性质的应用(2)
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
1.对数函数的性质:
a10a1
图
象
性
质定义域:
值域:
过点(,),即当时,
时
时
时
时
在(,)上是增函数在(,)上是减函数
2.函数恒过的定点坐标是()
A.B.C.D.
3.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.
课内探究学案
一、学习目标
1.使学生理解对数函数的定义,进一步掌握对数函数的图像和性质
2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
教学重点:对数函数的图像和性质
教学难点:底数a的变化对函数性质的影响
二、学习过程
探究点一
例1求下列函数的定义域:
(1);(2);(3)
解析:利用对数函数的定义域解.
解:略
点评:本题主要考察了利用函数的定义域.
探究点二
例2.比较大小
1.,,2.
解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.
探究点三
例3求下列函数的反函数
①②
解析:利用对数函数与指数函数互为反函数解.
解:略
点评:本题主要考察了反函数的解法.
三、反思总结
四、当堂检测
1.求下列函数的定义域:
(1)y=(1-x)(2)y=
(3)y=
2.若求实数的取值范围
课后练习与提高
1、函数的定义域是()
A、B、
C、D、
2、函数的值域是()
A、B、C、D、
3、若,那么满足的条件是()
A、B、C、D、
4、已知函数,判断的奇偶性和单调性。
文章来源:http://m.jab88.com/j/13233.html
更多