作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,使高中教师有一个简单易懂的教学思路。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家精心整理的“对数函数的概念及其性质”,仅供参考,欢迎大家阅读。
2.2.2对数函数及其性质学案
课前预习学案
一、预习目标
记住对数函数的定义;初步把握对数函数的图象与性质.
二、预习内容
1、对数函数的定义_______________________________________.
2、对数函数y=logax(a>0,且a≠1)的图像和性质
研究函数和的图象;
请同学们完成x,y对应值表,并用描点法分别画出函数和的图象:
X
…1…
…0…
…0…
观察发现:认真观察函数y=log2x的图象填写下表:(表一)
图象特征代数表述
图象位于y轴的________.定义域为:
图象向上、向下呈_________趋势.值域为:
图象自左向右呈___________趋势.函数在(0,+∞)上是:
观察发现:认真观察函数的图象填写下表:(表二)
图象特征代数表述
对数函数y=logax(a>0,且a≠1)的图像和性质:(表三)
0a1a1
图象
定义域
值域
性质
三、提出疑惑
课内探究学案
一、学习目标
1理解对数函数的概念,熟悉对数函数的图象与性质规律.
2掌握对数函数的性质.
学习重难点
对数函数的图象与性质
二、学习过程
探究点一
例1:求下列函数的定义域:
(1);(2).
练习:求下列函数的定义域:
(1);(2).
解析:直接利用对数函数的定义域求解,而不能先化简.
解:略
点评:本题主要考查了对数函数的定义域极其求法.
探究点二
例2:比较下列各组数中两个值的大小:
(1)(2)
(3)loga5.1,loga5.9(a>0,且a≠1).
(1)____;
(2)____;
(3)若,则m____n;
(4)若,则m____n.
三、反思总结
四、当堂检测
1、求下列函数的定义域
(1)(2)
2、比较下列各组数中两个值的大小
(1)(2)
课后练习与提高
1.函数f(x)=lg()是(奇、偶)函数。
2.已知函数f(x)=log0.5(-x2+4x+5),则f(3)与f(4)的大小关系为。
3.已知函数在[0,1]上是减函数,求实数a的取值范围.
总课题对数函数分课时第5课时总课时总第33课时
分课题对数函数的性质课型新授课
教学目标熟悉对数函数的图象和性质,会用对数函数的性质求一些与对数函数有关的复合函数的单调区间;对数形式函数单调区间及值域的求法。
重点对数函数的图象的变换。
难点对数函数的图象的变换。
一、复习引入
1、对数函数的概念及其与指数函数的关系
2、对数函数的图象及性质
3、与对数有关的复合函数及其性质
4、课前练习
(1)已知,则的大小。
(2)函数且恒过定点。
(3)将函数的图象向得到函数的图象;
将明函数的图象向得到函数的图象。
(4)函数的定义域为,求的反函数的定义域与值域分别。
二、例题分析
例1、画出函数的图象,并根据图象写出函数的单调区间。
例2、比较与图像的关系,并讨论函数与之间的关系。
变式:画出的图像,并利用函数图像求函数的值域及单调区间。
例3、判断函数的单调性,并证明。
例4、求函数在上的最值。
三、随堂练习
1、已知函数,,,的图象如图所示,
则下式中正确的是。
(1)(2)
(3)(4)
2、函数的奇偶性是。
3、在同一坐标系中作出下列函数的图像。
(1)(2)
四、回顾小结
1、函数图像的作法;2、对数形式函数单调区间及值域的求法。
课后作业
班级:高一()班姓名__________
一、基础题
1、若函数,则的大小关系为。
2、函数的单调递增区间是_______________________。
3、下列函数在上为增函数是___________________。
(1)(2)(3)(4)
4、函数的定义域是。
二、提高题
5、已知函数。
(1)求的定义域;(2)判断的奇偶性,并证明。
6、作出下列函数的图像,并写出函数的单调区间:
(1)(2)
三、能力题
7、对于任意,若函数,试比较与的大小。
8、已知,,求的最大值及取最大值时的值。
探究:关于的两方程,的根分别是,求的值。(图象法)
得分:____________________
俗话说,磨刀不误砍柴工。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生们能够在上课时充分理解所教内容,帮助教师能够更轻松的上课教学。写好一份优质的教案要怎么做呢?下面的内容是小编为大家整理的对数函数,仅供参考,欢迎大家阅读。
§2.3.2对数函数(三)
【学习目标】:
1.掌握对数函数的定义、图像和性质,会运用对数函数的知识解综合题;
2.了解复合形式的对数函数问题的解法。
【教学过程】:
一、复习引入:
1.回顾对数函数的定义、图像和性质:
2.函数的图象必经过定点
3.函数的定义域是为M,的定义域是为N,那么
4.函数的值域是
二、典例欣赏:
例1.判断函数的奇偶性.
变题1:已知函数,若,则_________。
变题2:已知函数是奇函数,求实数的值。
例2.判断函数()的单调性.
变题1:求下列函数的单调区间:
(1);(2)
变题2:已知在区间上是增函数,求实数a的取值范围。
变题3:已知函数.
(1)求证:函数在内单调递增;
(2)若关于的方程在上有解,求实数的取值范围.
变题4:已知函数,
(1)若定义域为R,求实数a的取值范围;
(2)若定义域为,求实数a的取值集合;
(3)若值域为R,求实数a的取值范围;
(4)若值域为,求实数a的取值集合.
【针对训练】班级姓名学号
1.函数过定点
2.函数的单调递增区间是
3.已知函数是定义在上的奇函数,且,则时,的表达式
4.已知,则
5.设,若函数有最小值,则不等式的解集为。
6.已知是上的减函数,那么的取值范围是
7.若函数的定义域为R,求的取值范围.
8.函数在上是增函数,求实数的取值范围.
9.已知函数满足:对任意实数,当时,总有,求实数a的取值范围。
10.设,且x+2y=1,求函数的值域.
11.已知函数.
①求的定义域;②讨论的单调性.
【拓展提高】
12.已知函数
(1)若函数的定义域为,求实数的取值范围,
(2)若函数的值域为,求实数的取值范围。
经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“对数函数的性质的应用”,欢迎大家与身边的朋友分享吧!
2.2.2对数函数的性质的应用(2)
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
1.对数函数的性质:
a10a1
图
象
性
质定义域:
值域:
过点(,),即当时,
时
时
时
时
在(,)上是增函数在(,)上是减函数
2.函数恒过的定点坐标是()
A.B.C.D.
3.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.
课内探究学案
一、学习目标
1.使学生理解对数函数的定义,进一步掌握对数函数的图像和性质
2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
教学重点:对数函数的图像和性质
教学难点:底数a的变化对函数性质的影响
二、学习过程
探究点一
例1求下列函数的定义域:
(1);(2);(3)
解析:利用对数函数的定义域解.
解:略
点评:本题主要考察了利用函数的定义域.
探究点二
例2.比较大小
1.,,2.
解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.
探究点三
例3求下列函数的反函数
①②
解析:利用对数函数与指数函数互为反函数解.
解:略
点评:本题主要考察了反函数的解法.
三、反思总结
四、当堂检测
1.求下列函数的定义域:
(1)y=(1-x)(2)y=
(3)y=
2.若求实数的取值范围
课后练习与提高
1、函数的定义域是()
A、B、
C、D、
2、函数的值域是()
A、B、C、D、
3、若,那么满足的条件是()
A、B、C、D、
4、已知函数,判断的奇偶性和单调性。
文章来源:http://m.jab88.com/j/5417.html
更多