88教案网

中考数学专题:几何图形的归纳,猜想,证明问题

老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“中考数学专题:几何图形的归纳,猜想,证明问题”,供您参考,希望能够帮助到大家。

中考数学专题10几何图形的归纳,猜想,证明问题

【前言】实行新课标以来,中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。根据学生反映,这种问题一般较难,得分率很低,经常有同学选择+填空就只错了这一道。对于这类归纳总结问题来说,思考的方法是最重要的,所以一下我们通过今年的一二模真题来看看如何应对这种新题型。

第一部分真题精讲

【例1】
如图,+1个边长为2的等边三角形有一条边在同一直线上,设的面积为,的面积为,…,的面积为,则=;=____(用含的式子表示).
【思路分析】拿到这种题型,第一步就是认清所求的图形到底是什么样的。本题还好,将阴影部分标出,不至于看错。但是如果不标就会有同学误以为所求的面积是,这种的,第二步就是看这些图形之间有什么共性和联系.首先所代表的三角形的底边是三角形的底边,而这个三角形和△是相似的.所以边长的比例就是与的比值.于是.接下来通过总结,我们发现所求的三角形有一个最大的共性就是高相等,为(连接上面所有的B点,将阴影部分放在反过来的等边三角形中看)。那么既然是求面积,高相等,剩下的自然就是底边的问题了。我们发现所有的B,C点连线的边都是平行的,于是自然可以得出自然是所在边上的n+1等分点.例如就是的一个三等分点.于是(n+1-1是什么意思?为什么要减1?)

【例2】
在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形,如图,菱形的四个顶点坐标分别是,,,,则菱形能覆盖的单位格点正方形的个数是_______个;若菱形的四个顶点坐标分别为,,,(为正整数),则菱形能覆盖的单位格点正方形的个数为_________(用含有的式子表示).
【思路分析】此题方法比较多,例如第一空直接数格子都可以数出是48(笑)。这里笔者提供一种方法,其他方法大家可以自己去想想看。因为求的是菱形包涵的正方形个数,所以只需求出被X,Y轴所分的四个三角形包涵的个数,再乘以4即可。比如我们来看第二象限那个三角形。第二象限菱形那条边过(-2n,0)(0,n),自然可以写出直线解析式为,斜率意味着什么?看上图,注意箭头标注的那些空白三角形,这些RT三角形一共有2n/2=n个,他们的纵直角边与横直角边的比是不是就是?而且这些直角三角形都是全等的,面积均为两个单位格点正方形的一半.那么整个的△AOB的面积自然就是,所有n个空白小三角形的面积之和为,相减之后自然就是所有格点正方形的面积,也就是数量了.所以整个菱形的正方形格点就是.

【例3】
如图,,过上到点的距离分别为的点作的垂线与相交,得到并标出一组黑色梯形,它们的面积分别为.则第一个黑色梯形的面积;观察图中的规律,第(为正整数)个黑色梯形的面积.
【思路分析】本题方法也比较多样。所有阴影部分都是一个直角梯形,而因为,所以梯形的上下底长度分别都对应了垂足到0点的距离,而高则是固定的2。第一个梯形上底是1,下底是3,所以.第二个梯形面积,第三个是,至此,我们发现本题中梯形面积数值上其实就是上下底的和.而且各个梯形的上底都是前一个梯形上底加上4。于是第n个梯形的上底就是1+4(n-1)=4n-3,(第一个梯形的上底1加上(n-1)个4.)下底自然就是4n-1,于是就是8n-4.

【例4】
在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3……每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有个.
【思路分析】此题看似麻烦,但是只要把握住“正方形”这个关键就可以了。对于来说,每条边的长度是2n,那么自然整点个数就是2n+1,所以四条边上整点一共有(2n+1)x4-4=8n(个)(要减去四个被重复算的顶点),于是就是80个.

【例5】
如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为_____.

【思路分析】本题依然要找出每个三角形和上一个三角形之间的规律联系。关键词“中点”“垂线”“等腰直角”。这就意味着每个三角形的锐角都是45度,并且直角边都是上一个三角形直角边的一半。绕一圈是360度,包涵了8个45°。于是绕到第八次就可以和BC重叠了,此时边长为△ABC的,故而得解。

【例6】
如图,以等腰三角形的斜边为直角边向外作第个等腰直角三角形,再以等腰直角三角形的斜边为直角边向外作第个等腰直角三角形,……,如此作下去,若,则第个等腰直角三角形的面积________(n为正整数).
【思路分析】和上题很类似的几何图形外延拓展问题。还是一样慢慢找小三角形面积的规律。由题可得,分子就是1,2,4,8,16这样的数列。于是

【总结】几何图形的归纳总结问题其实就包括了代数方面的数列问题,只不过需要考生自己找出图形与图形之间的联系而已。对于这类问题,首先就是要仔细读题,看清楚题目所求的未知量是什么,然后找出各个未知量之间的联系,这其中就包括了寻找未知量的拓展过程中,哪些变了,哪些没有变。最后根据这些联系列出通项去求解。在遇到具体关系很难找的问题时,不妨先写出第一项,第二项,第三项然后去找数式上的规律,如上面例6就是一例,如果纠结于几何图形当中等腰三角形直角边的平方,反而会使问题复杂化,直接列出前几项的面积就可以大胆的猜测出来结果了。这类题目计算量往往不大,重在思考和分析的方法,还请考生细心掌握。
第二部分发散思考

【思考1】
如图,在平面直角坐标系xOy中,,,,
,…,以为对角线作第一个正方形,以
为对角线作第二个正方形,以为对角线作第
三个正方形,…,如果所作正方形的对角线都在
y轴上,且的长度依次增加1个单位,顶点都在第一象
限内(n≥1,且n为整数).那么的纵坐标为;用n
的代数式表示的纵坐标:.

【思考2】
如图,在平面直角坐标系中,一颗棋子从点处开始跳动,第一
次跳到点关于x轴的对称点处,接着跳到点关于y轴
的对称点处,第三次再跳到点关于原点的对称点处,…,
如此循环下去.当跳动第2009次时,棋子落点处的坐标是

【思考3】
对于大于或等于2的自然数n的平方进行如下“分裂”,分裂成n个连续奇数的和,则自然数72的分裂数中最大的数是,自然数n的分裂数中最大的数是.

【思考4】
一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______

【思考5】
如图,将边长为的正方形纸片从左到右顺次摆放,其对应的正方形的中心依次为A1,A2,A3,….①若摆放前6
个正方形纸片,则图中被遮盖的线段(虚线部分)
之和为;②若摆放前n(n为大于1的正
整数)个正方形纸片,则图中被遮盖的线段(虚线部分)之和为.

第三部分思考题解析

【思考1答案】2;
【思考2答案】(3,-2)
【思考3答案】13;2n-1
【思考4答案】(5,0)
【思考5答案】10,

延伸阅读

中考数学专题:动态几何问题


一般给学生们上课之前,老师就早早地准备好了教案课件,规划教案课件的时刻悄悄来临了。在写好了教案课件计划后,这样我们接下来的工作才会更加好!你们会写多少教案课件范文呢?小编特地为您收集整理“中考数学专题:动态几何问题”,希望对您的工作和生活有所帮助。

中考数学专题3动态几何问题

第一部分真题精讲

【例1】如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).

(1)当时,求的值;

(2)试探究:为何值时,为等腰三角形.

【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。

【解析】

解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.

∵,.

∴.(根据第一讲我们说梯形内辅助线的常用做法,成功将MN放在三角形内,将动态问题转化成平行时候的静态问题)

∴.(这个比例关系就是将静态与动态联系起来的关键)

∴.解得.

【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解

【解析】

(2)分三种情况讨论:

①当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质)

∵,

②当时,如图③,过作于H.

则,

③当时,

则.

综上所述,当、或时,为等腰三角形.

【例2】在△ABC中,∠ACB=45.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.

(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?

(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,,CD=,求线段CP的长.(用含的式子表示)

【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。

【解析】:

(1)结论:CF与BD位置关系是垂直;

证明如下:AB=AC,∠ACB=45,∴∠ABC=45.

由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90,

∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.

∴∠BCF=∠ACB+∠ACF=90.即CF⊥BD.

【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解。

(2)CF⊥BD.(1)中结论成立.

理由是:过点A作AG⊥AC交BC于点G,∴AC=AG

可证:△GAD≌△CAF∴∠ACF=∠AGD=45

∠BCF=∠ACB+∠ACF=90.即CF⊥BD

【思路分析3】这一问有点棘手,D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X。分类讨论之后利用相似三角形的比例关系即可求出CP.

(3)过点A作AQ⊥BC交CB的延长线于点Q,

①点D在线段BC上运动时,

∵∠BCA=45,可求出AQ=CQ=4.∴DQ=4-x,

易证△AQD∽△DCP,∴,∴,

②点D在线段BC延长线上运动时,

∵∠BCA=45,可求出AQ=CQ=4,∴DQ=4+x.

过A作交CB延长线于点G,则.CF⊥BD,

△AQD∽△DCP,∴,∴,

【例3】已知如图,在梯形中,点是的中点,是等边三角形.

(1)求证:梯形是等腰梯形;

(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;

(3)在(2)中,当取最小值时,判断的形状,并说明理由.

【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢?当然是利用角度咯.于是就有了思路.

【解析】

(1)证明:∵是等边三角形

∵是中点

(2)解:在等边中,

∴(这个角度传递非常重要,大家要仔细揣摩)

∵∴

∴∴(设元以后得出比例关系,轻松化成二次函数的样子)

【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X取对称轴的值时Y有最小值。接下来就变成了“给定PC=2,求△PQC形状”的问题了。由已知的BC=4,自然看出P是中点,于是问题轻松求解。

(3)解:为直角三角形

∴当取最小值时,

∴是的中点,而

以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.

【例4】已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接.

(1)直接写出线段与的数量关系;

(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,.

你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)

【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。第二问将△BEF旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG之后,抛开其他条件,单看G点所在的四边形ADFE,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G点做AD,EF的垂线。于是两个全等的三角形出现了。

(1)

(2)(1)中结论没有发生变化,即.

证明:连接,过点作于,与的延长线交于点.

在与中,

∵,

∴.

∴.

在与中,

∵,

∴.

在矩形中,

在与中,

∵,

∴.

∴.

【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在动态问题专题中也是出于此原因,如果△BEF任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF的旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF这一条件将全等过渡。要想办法证明三角形ECH是一个等腰直角三角形,就需要证明三角形EBC和三角形CGH全等,利用角度变换关系就可以得证了。

(3)(1)中的结论仍然成立.

【例5】已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.

(1)当=1时,CF=______cm,

(2)当=2时,求sin∠DAB′的值;

(3)当=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).

【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E在BC上和E在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。

【解析】

(1)CF=6cm;(延长之后一眼看出,EAZY)

(2)①如图1,当点E在BC上时,延长AB′交DC于点M,

∵AB∥CF,∴△ABE∽△FCE,∴.

∵=2,∴CF=3.

∵AB∥CF,∴∠BAE=∠F.

又∠BAE=∠B′AE,∴∠B′AE=∠F.∴MA=MF.

设MA=MF=k,则MC=k-3,DM=9-k.

在Rt△ADM中,由勾股定理得:

k2=(9-k)2+62,解得k=MA=.∴DM=.(设元求解是这类题型中比较重要的方法)

∴sin∠DAB′=;

②如图2,当点E在BC延长线上时,延长AD交B′E于点N,

同①可得NA=NE.

设NA=NE=m,则B′N=12-m.

在Rt△AB′N中,由勾股定理,得

m2=(12-m)2+62,解得m=AN=.∴B′N=.

∴sin∠DAB′=.

(3)①当点E在BC上时,y=;

(所求△AB′E的面积即为△ABE的面积,再由相似表示出边长)

②当点E在BC延长线上时,y=.

【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:

第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。

第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

第二部分发散思考

【思考1】已知:如图(1),射线射线,是它们的公垂线,点、分别在、上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合),在运动过程中始终保持,且.

(1)求证:∽;

(2)如图(2),当点为边的中点时,求证:;

(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.

【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。

【思考2】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若<∠PBC<180°,

且∠PBC平分线上的一点D满足DB=DA,

(1)当BP与BA重合时(如图1),∠BPD=°;

(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;

(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.

【思路分析】本题中,和动点P相关的动量有∠PBC,以及D点的位置,但是不动的量就是BD是平分线并且DB=DA,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P点的轨迹就是以B为圆心,BA为半径的一个圆,那D点是什么呢?留给大家思考一下~

【思考3】如图:已知,四边形ABCD中,AD//BC,DC⊥BC,已知AB=5,BC=6,cosB=.

点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.

(1)当BO=AD时,求BP的长;

(2)点O运动的过程中,是否存在BP=MN的情况?若存在,请求出当BO为多长时BP=MN;若不存在,请说明理由;

(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围。

【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN和BP,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。

【思考4】在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)

(1)在图1中画图探究:

①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;

②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.

(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.

【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。

第三部分思考题解析

【思考1解析】

(1)证明:∵,∴.∴.

又∵,∴.

∴.∴∽.

(2)证明:如图,过点作,交于点,

∵是的中点,容易证明.

在中,∵,∴.

∴.

∴.

(3)解:的周长,.

设,则.

∵,∴.即.

∴.

由(1)知∽,

∴.

∴的周长的周长.

∴的周长与值无关.

【思考2答案】

解:(1)∠BPD=30°;

(2)如图8,连结CD.

解一:∵点D在∠PBC的平分线上,

∴∠1=∠2.

∵△ABC是等边三角形,

∴BA=BC=AC,∠ACB=60°.

∵BP=BA,

∴BP=BC.

∵BD=BD,

∴△PBD≌△CBD.

∴∠BPD=∠3.-----------------3分

∵DB=DA,BC=AC,CD=CD,

∴△BCD≌△ACD.

∴.

∴∠BPD=30°.

解二:∵△ABC是等边三角形,

∴BA=BC=AC.

∵DB=DA,

∴CD垂直平分AB.

∴.

∵BP=BA,

∴BP=BC.

∵点D在∠PBC的平分线上,

∴△PBD与△CBD关于BD所在直线对称.

∴∠BPD=∠3.

∴∠BPD=30°.

(3)∠BPD=30°或150°.

图形见图9、图10.

【思考3解析】

解:(1)过点A作AE⊥BC,在Rt△ABE中,由AB=5,cosB=得BE=3.

∵CD⊥BC,AD//BC,BC=6,

∴AD=EC=BC-BE=3.

当BO=AD=3时,在⊙O中,过点O作OH⊥AB,则BH=HP

∵,∴BH=.

∴BP=.

(2)不存在BP=MN的情况-

假设BP=MN成立,

∵BP和MN为⊙O的弦,则必有∠BOP=∠DOC.

过P作PQ⊥BC,过点O作OH⊥AB,

∵CD⊥BC,则有△PQO∽△DOC-

设BO=x,则PO=x,由,得BH=,

∴BP=2BH=.

∴BQ=BP×cosB=,PQ=.

∴OQ=.

∵△PQO∽△DOC,∴即,得.

当时,BP==>5=AB,与点P应在边AB上不符,

∴不存在BP=MN的情况.

(3)情况一:⊙O与⊙C相外切,此时,0<CN<6;------7分

情况二:⊙O与⊙C相内切,此时,0<CN≤.-------8分

【思考4解析】

解:(1)①直线与直线的位置关系为互相垂直.

证明:如图1,设直线与直线的交点为.

∵线段分别绕点逆时针旋转90°依次得到线段,

②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.

(2)∵四边形是平行四边形,

∴.

∴.

可得.

由(1)可得四边形为正方形.

∴.

①如图2,当点在线段的延长线上时,

∵,

∴.

∴.

②如图3,当点在线段上(不与两点重合)时,

∵,

∴.

③当点与点重合时,即时,不存在.

综上所述,与之间的函数关系式及自变量的取值范围是或.

中考数学专题:线段角的计算证明问题


老师工作中的一部分是写教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“中考数学专题:线段角的计算证明问题”,供您参考,希望能够帮助到大家。

中考数学专题1线段角的计算证明问题

第一部分真题精讲

【例1】如图,梯形中,,.求的长.

【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。这道题中未知的是AB,已知的是AD,BC以及△BDC是等腰直角三角形,所以要把未知的AB也放在已知条件当中去考察.做AE,DF垂直于BC,则很轻易发现我们将AB带入到了一个有大量已知条件的直角三角形当中.于是有解如下.

【解析】

作于于

四边形是矩形.

是的边上的中线.

在中,

【例2】已知:如图,在直角梯形中,∥,,于点O,,求的长.

【思路分析】这道题给出了梯形两对角线的关系.求梯形上底.对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角)的题,一般思路是将对角线提出来构造一个三角形.对于此题来说,直接将AC向右平移,构造一个以D为直角顶点的直角三角形.这样就将AD转化成了直角三角形中斜边被高分成的两条线段之一,而另一条线段BC是已知的.于是问题迎刃而解.

【解析】

过点作交的延长线于点.

∴.

∵于点,

∴四边形为平行四边形.

此题还有许多别的解法,例如直接利用直角三角形的两个锐角互余关系,证明△ACD和△DBC相似,从而利用比例关系直接求出CD。有兴趣的考生可以多发散思维去研究。

【例3】如图,在梯形中,,,,为中点,.求的长度

【思路分析】这道题是东城的解答题第二部分第一道,就是我们所谓提难度的门槛题。乍看之下好象直接过D做垂线之类的方法不行.那该怎样做辅助线呢?答案就隐藏在E是中点这个条件中.在梯形中,一腰中点是很特殊的.一方面中点本身是多对全等三角形的公共点,另一方面中点和其他底,腰的中点连线就是一些三角形的中线,利用中点的比例关系就可以将已知条件代入.比如这道题,过中点E做BC的垂线,那么这条垂线与AD延长线,BC就构成了两个全等的直角三角形.并且这两个直角三角形的一个锐角的正切值是已经给出的.于是得解.

【解析】

过点作的垂线交于点,交的延长线于点.

在梯形中,,是的中点,

∵,∴.

在中,,

∴.

在中,

【总结】以上三道真题,都是在梯形中求线段长度的问题.这些问题一般都是要靠做出精妙的辅助线来解决.辅助线的总体思路就是将梯形拆分或者填充成矩形+三角形的组合,从而达到利用已知求未知的目的.一般来说,梯形的辅助线主要有以下5类:

1、过一底的两端做另一底的垂线,拆梯形为两直角三角形+一矩形

2、平移一腰,分梯形为平行四边形+三角形

3、延长梯形两腰交于一点构造三角形

4、平移对角线,转化为平行四边形+三角形

5、连接顶点与中点延长线交于另一底延长线构筑两个全等三角形或者过中点做底边垂线构筑两个全等的直角三角形

以上五种方法就是梯形内线段问题的一般辅助线做法。对于角度问题,其实思路也是一样的。通过做辅助线使得已知角度通过平行,全等方式转移到未知量附近。之前三道例题主要是和线段有关的计算。我们接下来看看和角度有关的计算与证明问题。

【例4】如图,在梯形中,,平分,过

点作,交的延长线于点,且,,,

求的长.

【思路分析】此题相对比较简单,不需要做辅助线就可以得出结果。但是题目中给的条件都是此类角度问题的基本条件。例如对角线平分某角,然后有角度之间的关系。面对这种题目还是需要将已知的角度关系理顺。首先根据题目中条件,尤其是利用平行线这一条件,可以得出(见下图)角C与角1,2,3以及角E的关系。于是一系列转化过后,发现角C=60度,即三角形DBC为RT三角形。于是得解。

【解析】:

∴梯形是等腰梯形

【例5】已知:,,以AB为一边作正方形ABCD,使P、D两点落在直线AB

的两侧.

如图,当∠APB=45°时,求AB及PD的长;

【思路分析】这是去年西城一模的压轴题的第一小问。如果线段角的计算出现在中间部分,往往意味着难度并不会太高。但是一旦出现在压轴题,那么有的时候往往比函数题,方程题更为棘手。这题求AB比较容易,过A做BP垂线,利用等腰直角三角形的性质,将△APB分成两个有很多已知量的RT△。但是求PD时候就很麻烦了。PD所在的三角形PAD是个钝角三角形,所以就需要我们将PD放在一个直角三角形中试试看。构筑包含PD的直角三角形,最简单的就是过P做DA延长线的垂线交DA于F,DF交PB于G。这样一来,得到了△PFA△AGE等多个RT△。于是与已求出的AB等量产生了关系,得解。

【解析】:

如图,作AE⊥PB于点E.

在Rt△ABE中,∠AEB=90°,

∴.

如图,过点P作AB的平行线,与DA的延长线交于F,设DA的延长线交PB于G.

在Rt△AEG中,可得

(这一步最难想到,利用直角三角形斜边高分成的两个小直角三角形的角度关系)

,.

在Rt△PFG中,可得,.

【总结】由此我们可以看出,在涉及到角度的计算证明问题时,一般情况下都是要将已知角度通过平行,垂直等关系过度给未知角度。所以,构建辅助线一般也是从这个思路出发,利用一些特殊图形中的特殊角关系(例如上题中的直角三角形斜边高分三角形的角度关系)以及借助特殊角的三角函数来达到求解的目的。

第二部分发散思考

通过以上的一模真题,我们对线段角的相关问题解题思路有了一些认识。接下来我们自己动手做一些题目。希望考生先做题,没有思路了看分析,再没思路了再看答案。

【思考1】如图,在梯形ABCD中,AD∥BC,.若AC⊥BD,

AD+BC=,且,求CD的长.

【思路分析】前面我已经分析过,梯形问题无非也就那么几种辅助线的做法。此题求腰,所以自然是先将腰放在某个RT三角形中。另外遇到对角线垂直这类问题,一般都是平移某一条对角线以构造更大的一个RT三角形,所以此题需要两条辅助线。在这类问题中,辅助线的方式往往需要交叉运用,如果思想放不开,不敢多做,巧做,就不容易得出答案。

[解法见后文]

【思考2】如图,梯形ABCD中,AD//BC,∠B=30°,∠C=60°,E,M,F,N分别是AB,BC,CD,DA的中点,已知BC=7,MN=3,求EF

【思路分析】此题有一定难度,要求考生不仅掌握中位线的相关计算方法,也对三点共线提出了要求。若求EF,因为BC已知,所以只需求出AD即可。由题目所给角B,角C的度数,应该自然联想到直角三角形中求解。

(解法见后)

【思考3】已知,延长到,使.取的中点,连结交于点.

⑴求的值;

⑵若,,求的长.

【思路分析】求比例关系,一般都是要利用相似三角形来求解。此题中有一个等量关系BC=CD,又有F中点,所以需要做辅助线,利用这些已知关系来构造数个相似三角形就成了获得比例的关键。

(解法见后)

【思考4】如图3,△ABC中,∠A=90°,D为斜边BC的中点,E,F分别为AB,AC上的点,且DE⊥DF,若BE=3,CF=4,试求EF的长.

【思路分析】中点问题是中考几何中的大热点,几乎年年考。有中点自然有中线,而倍长中线方法也成为解题的关键。将三角形的中线延长一倍,刚好可以构造出两个全等三角形,很多问题就可以轻松求解。本题中,D为中点,所以大家可以看看如何在这个里面构造倍长中线。

(解法见后)

【思考5】如图,在四边形中,为上一点,和都是等边三角形,、、、的中点分别为、、、,试判断四边形为怎样的四边形,并证明你的结论.

【思路分析】此题也是中点题,不同的是上题考察中线,此题考察中位线。本题需要考生对各个特殊四边形的性质了如指掌,判定,证明上都需要很好的感觉。尤其注意梯形,菱形,正方形,矩形等之间的转化条件。

(解法见后)

第三部分思考题答案

思考1

【解析】:作DE⊥BC于E,过D作DF∥AC交BC延长线于F.

则四边形ADFC是平行四边形,∴,DF=AC.

∵四边形ABCD是等腰梯形,

∴AC=BD.∴

又∵AC⊥BD,DF∥AC,∴BD⊥DF.

∴ΔBDF是等腰直角三角形

在中,

思考2

【解析】:

延长BA,CD交于点H,连接HN,

因为∠B=30°,∠C=60°,所以∠BHC=90°

所以HN=DN(直角三角形斜边中线性质)

∠NHD=∠NDH=60°

连接MH,同理可知∠MHD=∠C=60°。

所以∠NHD=∠MHD,即H,N,M三点共线(这一点容易被遗漏,很多考生会想当然认为他们共线,其实还是要证明一下)

所以HM=3.5,NH=0.5AN=0.5

所以AD=1EF=(1+7)/2=4

思考3

【解析】⑴过点作,交于点.

∵为的中点

∴为的中点,

由,得,

⑵∵,∴

又,∴

∵,∴.

思考4

【解析】:

延长ED至点G,使DG=ED,连接CG,FG.

则△CDG≌△BDE.所以CG=BE=3,∠2=∠B.

因为∠B+∠1=90°,所以∠1+∠2=∠FCG=90°.

因为DF垂直平分EG,所以FG=EF.

在Rt△FCG中,由勾股定理得,所以EF=5.

思考5

【解析】:

证明:如图,连结、.

∵为的中位线,

∴,.

同理,.

∴,,

∴四边形为平行四边形.(有些同学做到这一步就停了,没有继续发现三角形全等这一特点,从而漏掉了菱形的情况,十分可惜)

在和中,

,,,

即.

∴.

∴.

∴四边形为菱形.

中考数学归纳猜想型问题复习导学案


2012年中考复习二轮材料

归纳猜想型问题

一.专题诠释

归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。

二.解题策略和解法精讲

归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。

三.考点精讲

考点一:猜想数式规律

通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

例1.(2011云南曲靖)将一列整式按某种规律排成x,﹣2x2,4x3,﹣8x4,16x5…则排在第六个位置的整式为.

【分析】符号的规律:n为奇数时,单项式为正号,n为偶数时,符号为负号;系数的绝对值的规律:第n个对应的系数的绝对值是2n﹣1.指数的规律:第n个对应的指数是n.

【解答】根据分析的规律,得:第六个位置的整式为:﹣26x6=﹣32x6.

故答案为:﹣32x6.

【评注】此题考查的知识点是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.

例2.(2011山东济宁)观察下面的变形规律:

=1-;=-;=-;……

解答下面的问题:

(1)若n为正整数,请你猜想=;

(2)证明你猜想的结论;

(3)求和:+++…+.

【分析】(1)根据的定义规则,可知,,,.则有.

(2)观察数表可知,第1问中的恰是的具体形式,若将赋值于不同的行与列,我们不难发现.

【解答】(1)

(2)证明:-=-==

(3)原式=1-+-+-+…+-=

【评注】归纳猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.本题属于典型的开放性探究题,其中的分数形式、分母中相邻两数相差1,都给答案探究提供了蛛丝马迹。问题设置层次感较强,遵循了从特殊到一般的认识规律.从培养学生不完全归纳能力的角度看,不失为一道训练思维的好题.

考点二:猜想图形规律

根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。

例1.(2011重庆)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()

A、55B、42C、41D、29

【分析】规律的归纳:通过观察图形可以看到每转动4次后便可重合,即4次一个循环,10÷4=2…2,所以应和图②相同.

【解答】∵图②平行四边形有5个=1+2+2,

图③平行四边形有11个=1+2+3+2+3,

图④平行四边形有19=1+2+3+4+2+3+4,

∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.

故选C.

【评注】本题是规律的归纳题,解决本题的关键是读懂题意,理清题归纳出规律,然后套用题目提供的对应关系解决问题,具有一定的区分度.根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.

例2.(2011浙江舟山)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()

A、2010B、2011C、2012D、2013

【分析】该纸链是5的倍数,中间截去的是剩下3+5n,从选项中数减3为5的倍数即得到答案.

【解答】由题意设被截去部分为5n+2+1=5n+3,从其选项中看,故选D.

【评注】本题考查了图形的变化规律,从整体是5个不同颜色环的整数倍数,截去部分去3后为5的倍数,从而得到答案.

考点三:猜想数量关系

数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。

例1.(2011江西南昌,25,10分)某数学兴趣小组开展了一次活动,过程如下:

设∠BAC=(0°<<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.

活动一:

如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.

数学思考:

(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)

(2)设AA1=A1A2=A2A3=1.

①=度;

②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出an(用含n的式子表示).

图甲

活动二:

如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.

数学思考:

(3)若已经向右摆放了3根小棒,则=,=,=;(用含的式子表示)

(4)若只能摆放4根小棒,求的范围.

图乙

【分析】(1)显而易见,能。

(2)①22.5°

②方法一:

∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=1+.

又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,

∴AA3=A3A4,AA5=A5A6,∴a2=A3A4=AA3=1+,a3=AA3+A3A5=a2+A3A5.∵A3A5=a2,

∴a3=A5A6=AA5=a2+a2=(+1)2.

方法二:

∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=1+.

又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,

∴a2=A3A4=AA3=1+,又∵∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4A6A5,∴△A2A3A4∽△A4A5A6,

∴,∴a3==(+1)2.

an=(+1)n-1.

(3)

(4)由题意得,∴15°<≤18°.

【解答】(1)能

(2)①22.5°

②an=(+1)n-1.

(3)

(4)由题意得,∴15°<≤18°.

【评注】这是一道典型的归纳猜想型问题,以物理学中反射的知识作为命题载体,而三角形外角等于不相邻的两个内角和,是解决问题的主干数学知识。

例2.(2011浙江衢州)是一张等腰直角三角形纸板,.

要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.

图1中甲种剪法称为第1次剪取,记所得的正方形面积为;按照甲种剪法,在余下的中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为(如图3);继续操作下去…则第10次剪取时,.

求第10次剪取后,余下的所有小三角形的面积和.

【分析】解决问题的关键看内接正方形的一边与三角形重合的边落在三角形的哪条边上,通过对例题的分析,直角三角形的内接正方形有两种,比较两者的大小,可知,直角边上的内接正方形的边长比斜边上的内接正方形的边长大。

【解答】(1)解法1:如图甲,由题意得.如图乙,设,则由题意,得

甲种剪法所得的正方形的面积更大

说明:图甲可另解为:由题意得点D、E、F分别为的中点,

解法2:如图甲,由题意得

如图乙,设

甲种剪法所得的正方形的面积更大

(2)

(3)

(3)解法1:探索规律可知:‘

剩余三角形的面积和为:

解法2:由题意可知,

第一次剪取后剩余三角形面积和为

第二次剪取后剩余三角形面积和为

第三次剪取后剩余三角形面积和为

……

第十次剪取后剩余三角形面积和为

【评注】类比思想是数学学习中不可缺少的一种数学方法,它可以使一些数学问题简单化,也可以使我们的思维更加广阔。数学思维呈现形式是隐蔽的,难以从教材中获取,这就要求在教学过程中,有目的地进行思维训练,通过思维类比,不断在解决问题中深化引导,学生的数学思维能力就会得到相应的提高。

考点四:猜想变化情况

随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。

例1.(2010河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是

A.6B.5C.3D.2

【分析】不妨把立体图形用平面的形式表现出来。如右图所示。

前三次变换过程为下图所示:

可以发现,三次变换可还原成初始状态。十次意味着三轮还原后又变换了一次,所以状态为上图所示,骰子朝上一面的点数是5。

【解答】B。

【评注】历年以“骰子”形式出现的中考题不在少数。本题以考查学生空间想象能力为出发点,将空间转化融入到正方体的旋转中。正方体表面展开图识别对面本不难,但这样一来难度陡然上升。三次变换循环的规律也要煞费周折。有点动手操作题的味道。题目呈现方式灵活,考查形式新颖,使日常熟悉的东西平中见奇。要求考生有很强的空间感,给平时靠死记硬背得分的同学一个下马威,也给教学中不重视动手探究的老师敲响了警钟。

例2.(2011湖南邵阳)数学课堂上,徐老师出示了一道试题:

如图(十)所示,在正三角形ABC中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。

(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。

证明:在AB上截取EA=MC,连结EM,得△AEM。

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,

∴∠1=∠2.

又∵CN、平分∠ACP,∴∠4=∠ACP=60°。

∴∠MCN=∠3+∠4=120°。………………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM。

∴△BEM为等边三角形,∴∠6=60°。

∴∠5=10°-∠6=120°。………………②

由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵__________,____________,___________,

∴△AEM≌△MCN(ASA)。

∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?(直接给出答案,不需要证明)

(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=______°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)

【分析】证明线段相等,三角形全等是一种重要的方法。根据题目条件,结合图形,对应边角还是不难找的。关键是到正方形、正多边形,哪些条件变了,哪些没变。

【解答】(1)∠5=∠MCN,AE=MC,∠2=∠1;

(2)结论成立;

(3)。

【评注】三角形全等的判定是初中数学中的重点知识,第一问明显考查“角边角”方法的条件寻找。而从三角形到正方形的变化,抓住不变的东西,透视问题的本质,也不难得到正确答案。再到正多边形,是一个质的飞跃。在这道题中,先探讨简单情景下存在的某个结论,然后进一步推广到一般情况下,原来结论是否成立,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,难度不算大,具有一定的区分度.

四.真题演练

1.(2011四川成都)设,,,…,

设,则S=_________(用含n的代数式表示,其中n为正整数).

2.(2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆.(用含n的代数式表示)

3.(2011河北)如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.

如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.

若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.

4.(2010四川内江)阅读理解:

我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(x1+x22,y1+y22).

观察应用:

(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为;

(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,….则P3、P8的坐标分别为,;

拓展延伸:

(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

答案:

1..

==

=

∴S=+++…+.

接下去利用拆项法即可求和.

2.或

3.根据“移位”的特点,然后根据例子寻找规律,从而得出结论.

∵小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”,

∴3→4→5→1→2五个顶点五次移位为一个循环返回顶点3,

同理可得:小宇从编号为2的顶点开始,第10次“移位”,即连续循环两次,故仍回到顶点3.

故答案为:3.

4.设A、P3、P4、…、Pn点的坐标依次为(x,y)、(x3,y3)、(x4,y4)、…、(xn,yn)(n≥3,且为正整数).

(1)P1(0,-1)、P2(2,3),

∴x=0+22=1,y=-1+32=1,

∴A(1,1)

(2)∵点P3与P2关于点B成中心对称,且B(-1.6,2.1),

∴2+x32=-1.6,3+y32=2.1,

解得x3=-5.2,y3=1.2,

∴P3(-5.2,1.2).

∵点P4与P3关于点C成中心对称,且C(-1,0),

∴-5.2+x42=-1,1.2+y32=0,

解得x4=3.2,y4=-1.2,

∴P4(3.2,-1.2).

同理可得P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3).

(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2).→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)…

∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,

∵2012÷6=335……2,

∴P2012的坐标与P2的坐标相同,为P2012(2,3);

在x轴上与点P2012、点C构成等腰三角形的点的坐标为

(-32-1,0),(2,0),(32-1,0),(5,0)

第二部分练习部分

1.(2011湖南常德)先找规律,再填数:

2.(2011四川内江)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做:

(1)观察并猜想:

12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)

12+22+32=(1+0)×1+(1+1)×2+(1+2)×3

=1+0×1+2+1×2+3+2×3

=(1+2+3)+(0×1+1×2+2×3)

12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+

=1+0×1+2+1×2+3+2×3+

=(1+2+3+4)+()

……

(2)归纳结论:

12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n

=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n

=()+

=+

(3)实践应用:

通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是.

3.(2011广东肇庆)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是.

4.(2011广东东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2F2,如图(3)中阴影部分;如此下去…,则正六角星形AnFnBnDnCnEnFn的面积为.

5.(2011广东汕头)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.

(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;

(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;

(3)求第n行各数之和.

6.(2011四川凉山)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。

(1)根据上面的规律,写出的展开式。

(2)利用上面的规律计算:

7.(2011江苏南通)如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=33x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=.

8.(2010年湖北恩施)(1)计算:如图10①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C,求OA的长(用含的代数式表示).

(2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示).

(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)

答案:

1.

2.(1+3)×4

4+3×4

0×1+1×2+2×3+3×4

1+2+3+…+n

0×1+1×2+2×3++…+(n-1)×n

n(n+1)(n—1)

n(n+1)(2n+1)

3.

4.

5.(1)64,8,15;

(2),,;

(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.

6.⑴

⑵原式=

7.设直线y=33x与三个半圆分别切于A,

B,C,作AEX轴于E,则在RtAEO1中,易得∠AOE=∠EAO1=300,由r1=1得EO=,

AE=,OE=,OO1=2。则。同理,。

8.(1)∵⊙O、⊙O、⊙O两两外切,

∴OO=OO=OO=a

又∵OA=OA

∴OA⊥OO

∴OA=

=

3.方案二装运钢管最多.即:按图10③的方式排放钢管,放置根数最多.

根据题意,第一层排放31根,第二层排放30根,

设钢管的放置层数为n,可得

解得

∵为正整数∴=35

钢管放置的最多根数为:31×18+30×17=1068(根)

【答案】

1.(1)

=1260

2.根据如图所示的运算程序,分情况列出算式,当x为偶数时,结果为;当x为奇数时,结果为,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为3,以后每次输出的结果都是3.所以选择B。

3.图案是一圈一圈的。可以根据每圈中棋子的个数得出规律。第1个图案需要7=1+6枚棋子,第2个图案需要19=1+6+12枚棋子,第3个图案需要37=1+6+12+18枚棋子,由此规律可得第6个图案需要1+6+12+…+3×(6+1)枚棋子,第n个图案需要1+6+12+…+3×(n+1)=1+3×=枚棋子。所以,摆第6个图案需要127枚棋子,摆第n个图案需要枚棋子.

4.正△A1B1C1的面积,第二个正三角形的面积是前一个正三角形面积的四分之一,第8个正△A8B8C8的面积是第一个正方形面积的,所以,第8个正△A8B8C8的面积是,选择C。

5.当OAn与轴正半轴重合时,度数为360m+90是10的倍数,从2+22+23+…,只有2+22+23+24=30和2+22+23+24+25+26+27+28=510,所以n必须是8的倍数或是8的倍数多4,当m为1,2,3时,无解,当m为4时,360m+90=1530,符合题意。故答案选B。

7.(1)∵⊙O、⊙O、⊙O两两外切,

∴OO=OO=OO=a

又∵OA=OA

∴OA⊥OO

∴OA=

=

(2)=

=

4.方案二装运钢管最多.即:按图10③的方式排放钢管,放置根数最多.

根据题意,第一层排放31根,第二层排放30根,

设钢管的放置层数为n,可得

解得

∵为正整数∴=35

钢管放置的最多根数为:31×18+30×17=1068(根)

4.(2010年浙江绍兴中考题)(1)如图1,在正方形ABCD中,点E,F分别在边BC,

CD上,AE,BF交于点O,∠AOF=90°.

求证:BE=CF.

(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,

BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF

=4.求GH的长.

(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,

∠FOH=90°,EF=4.直接写出下列两题的答案:

①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

(1)证明:如图1,∵四边形ABCD为正方形,

∴AB=BC,∠ABC=∠BCD=90°,

∴∠EAB+∠AEB=90°.

∵∠EOB=∠AOF=90°,

∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,

∴△ABE≌△BCF,∴BE=CF.

(2)如图2,过点A作AM//GH交BC于M,

过点B作BN//EF交CD于N,AM与BN交于点O/,

则四边形AMHG和四边形BNFE均为平行四边形,

∴EF=BN,GH=AM,

∵∠FOH=90°,AM//GH,EF//BN,∴∠NO/A=90°,

故由(1)得,△ABM≌△BCN,∴AM=BN,

∴GH=EF=4.

(3)①8.②4n。

文章来源:http://m.jab88.com/j/71818.html

更多

最新更新

更多