每个老师需要在上课前弄好自己的教案课件,是认真规划好自己教案课件的时候了。必须要写好了教案课件计划,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?以下是小编收集整理的“九年级数学上3.1比例线段(湘教版2份打包)”,供您参考,希望能够帮助到大家。
第3章图形的相似
3.1比例线段
3.1.1比例的基本性质
1.掌握比例的基本性质及其简单应用.(重点)
2.能灵活运用比例的基本性质进行比例式的变形.(难点)
阅读教材P62~63,理解并掌握比例的基本性质.
(一)知识探究
1.如果两个数的比值与另外两个数的比值相等,就说这四个数________.通常我们把a,b,c.d四个实数成比例表示成a∶b=c∶d或ab=cd,其中________称为比例内项,________称为比例外项.
2.比例的基本性质:如果ab=cd,那么________=bc.
(二)自学反馈
1.下列数字中,成比例的一组是()
A.1,2,3,4B.16,8,10,5
C.8,5,6,10D.5,5,6,7
2.若ab=cd≠0,则ba=________,ac=________.
活动1小组讨论
例1已知四个非零实数a,b,c,d成比例,即ab=cd.①
下列各式成立吗?若成立,请说明理由.
ba=dc,②
ac=bd,③
a+bb=c+dd.④
解:由于两个非零数相等,则它们的倒数也相等,
因此,由①式可以立即得到②式,即②式成立.
由①式,得ad=bc.
在上式两边同除以cd,得ac=bd,即③式成立.
在①式两边都加上1,得ab+1=cd+1.
由此得到a+bb=c+dd,即④式成立.
例2根据下列条件,求a∶b的值:
(1)4a=5b;(2)a7=b8.
解:(1)∵4a=5b,∴ab=54.
(2)∵a7=b8,∴8a=7b.∴ab=78.
比例式与等积式可以互化,将等积式化为比例式时,只要保证在同一积中的两个数放在同一条“对角线”的两端即可;将比例式化成等积式,利用等式的性质和解方程的观点处理比例式的问题是一种常用的方法.
活动2跟踪训练
1.下列各组数中,成比例的是()
A.3,6,7,9B.2,5,6,8
C.3,6,9,18D.11,12,13,14
2.若xy=35,则yx=________.
3.已知ab=12,则a+bb=________.
4.求下列各式中的x值.
(1)5∶x=10∶2;
(2)7∶12=14∶2x;
(3)32∶34=x∶3;
(4)(5-x)∶x=2∶6.
活动3课堂小结
1.什么叫四个数成比例?
2.比例的基本性质.
【预习导学】
知识探究
1.成比例b,ca,d2.ad
自学反馈
1.B2.dcbd
【合作探究】
活动2跟踪训练
1.C2.533.324.(1)x=1.(2)x=12.(3)x=6.(4)x=154.位似导学案(人教版2份)
课题:27.3位似(1)
学习目标:
1、知道位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2、握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
重点:位似图形的有关概念、性质与作图.
难点:利用位似将一个图形放大或缩小.
一、自主预习
1.(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?
2.(P47页)把图27.3-2中的四边形ABCD缩小到原来的.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.
二、合作探究
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD的反向延长线上取点A′、B′、C′、D′,使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
四、归纳反思
谈谈你这节课学习的收获
五、达标测评
1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.
(1)(2)
九年级数学上册3.3相似图形(湘教版)
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“九年级数学上册3.3相似图形(湘教版)”,仅供参考,欢迎大家阅读。
3.3相似图形
1.了解相似三角形、相似多边形的概念和性质.(重点)
2.会用相似多边形的性质解决简单的几何问题.(难点)
阅读教材P73~75,弄清楚相似图形的概念,能正确判断两个图形是否相似.
(一)知识探究
1.直观上,把一个图形放大(或缩小)得到的图形与原图形是________的.
2.相似三角形的对应角________,对应边________,我们把三个角对应相等,且三条边对应成比例的两个三角形叫作________三角形.如果△ABC与△A1B1C1相似,且点A,B,C分别与点A1,B1,C1对应,则记作:△ABC________△A1B1C1,读作△ABC________△A1B1C1.相似三角形对应边的比叫作________.
3.对于两个边数相同的多边形,如果它们的对应角相等、对应边成比例,那么这两个多边形叫作________多边形.相似多边形的对应边的比叫作________.如果四边形ABCD与四边形A1B1C1D1相似,且点A,B,C,D分别与点A1,B1,C1,D1对应,则记作:四边形ABCD________四边形A1B1C1D1.
4.相似多边形的对应角________,对应边________.
(二)自学反馈
1.从放大镜里看到的三角板和原来的三角板相似吗?________
2.哈哈镜中人的形象与本人相似吗?________
3.全等三角形相似吗?________
4.生活中哪些地方会见到相似图形?________________
活动1小组讨论
例如图,已知△ABC∽△A′B′C′,且∠A=48°,AB=8,A′B′=4,AC=6,求∠A′的大小和A′C′的长.
解:∵△ABC∽△A′B′C′,∴∠A=∠A′,ABA′B′=ACA′C′.
又∠A=48°,AB=8,A′B′=4,AC=6,
∴∠A′=48°,84=6A′C′,即A′C′=3.
活动2跟踪训练
1.下列各图中哪组图形是相似图形()
2.已知△ABC∽△DEF,若∠A=60°,∠B=70°,则∠E的度数为()
A.50°B.60°C.70°D.80°
3.如果△ABC∽△A′B′C′,BC=1,B′C′=2,AC=4,那么A′C′为________.
4.根据图中所示,这两个菱形相似吗?说说你的理由.
活动3课堂小结
学生试述:今天学到了什么?
【预习导学】
知识探究
1.相似2.相等成比例相似∽相似于相似比
3.相似比∽4.相等成比例
自学反馈
1.相似2.不相似3.相似4.略
【合作探究】
活动2跟踪训练
1.C2.C3.84.不相似.理由:∵菱形的四条边都相等,∴这两个菱形对应边成比例.∵第一个菱形的内角分别为45°,135°,45°,135°,第二个菱形的内角分别为60°,120°,60°,120°,它们不对应相等,∴这两个菱形不相似.
文章来源://m.jab88.com/j/70271.html
更多