九年级数学上册《用频率估计概率》知识点复习浙教版
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
4、如何用频率估计概率
在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近.n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.
下面我再给你举个例子:掷一枚质地均匀的硬币,硬币正、反两面向上的可能性会相等,如果我只抛掷一次且正面朝上,得出结论硬币正面向上的概率为1,显然这是不准确的;随着抛掷次数的增多,出现正面向上的频率越来越接近于1/2,那么我们就说硬币正面向上的概率为1/2。
课后练习
1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()
A.90个B.24个C.70个D.32个
2.下列说法正确的是().
A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
C.彩票中奖的机会是1%,买100张一定会中奖;
D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.
3.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().
A.10粒B.160粒C.450粒D.500粒
答案:
1.D2.B3.C
九年级数学《事件的可能性》知识点复习
知识点
随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
一、概率的频率定义
随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。
二、概率的严格定义
设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件S,有P(S)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
三、概率的古典定义
如果一个试验满足两条:
(1)试验只有有限个基本结果;
(2)试验的每个基本结果出现的可能性是一样的。
这样的试验,成为古典试验。
对于古典试验中的事件A,它的概率定义为:
P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。
每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“《简单事件的概率》教学设计”,仅供参考,欢迎大家阅读。
《简单事件的概率》教学设计
教学目标:
1、了解事件A发生的概率为;
2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。
3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。
教学重点:
进一步经历用树状图、列表法计算随机事件发生的概率。
教学难点:
正确地利用列表法计算随机事件发生的概率。
教学过程:
一、创设故事情景国王和大臣的故事
相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。国王一心想处死大臣,与几个心腹密谋,想出一条毒计:暗中让执行官把“生死签”上都写成“死”。
问题:1、在国王的阴谋中,大臣被处死的可能性为多大?
2、在法规中,大臣被处死的可能性为多大?
3、大臣会想到什么计策?
然而,在断头台前,聪明的大臣迅速抽出一张纸签塞进嘴里,等到执行官反应过来,纸签早已吞下,大臣故作叹息说:“我听天意,既将苦果吞下,只要看剩下的签是什么字就清楚了。”剩下的当然写着“死”字,国王怕犯众怒,只好当众释放了大臣。
国王“机关算尽”,想把不确定事件变为确定事件,反而搬起石头砸自己脚,让机智的大臣死里逃生。
问题4、在大臣的计策中,大臣被处死的可能性为多大?
二、搜索生活,数学就在我们身边
1.从标有1-10的数字小片中,随机地抽出一张卡片,则抽出5的可能性多大?
2.如图甲三色转盘,让转盘自由转动一次,“指针落在黄色区域”的可能性是多少?那乙呢?
甲已
三、新课教学。
1、问题5、事件发生的可能性大小是由什么来决定?
如果几个事件的发生条件相同,那么这些事件发生的可能性相同.这样的事件称为等可能性事件.
判断下列事件是否为等可能事件?
(1)抛掷一枚均匀的硬币,正面朝上。
(2)抛一枚图钉,钉尖朝上。
(3)一副扑克牌中任抽一张是红桃。
(4)某篮球运动员投篮一次命中目标。
师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的各种可能结果的可能性相同,结果总数为n(事件A发生的可能的结果总数为m),事件A发生的概率为。
师:结合定义作详细分析,为两个例题教学做准备。
(分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域的可能性相同,所有可能的结果总数为,其中“指针落在黄色区域”的可能结果总数为。若记“指针落在黄色区域”为事件A,则。)
设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。
2、例题讲解:
例1如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求(1)转盘转动后所有可能的结果;
(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;
(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;
例题解析:
(1)例1关键是让学生学会分步思考的方法。
(2)教师分析并让学生学会画树状图(教师板演)。
3、巩固练习:任意抛掷两枚均匀硬币,硬币落地后,
(1)写出抛掷后所有可能的结果(用树状图表示)。
(2)一正一反的概率是多少?(指定一名学生板演)
4、讲解例2:一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。
(1)写出两次摸球的所有可能的结果;
(2)摸出一个红球,一个白球的概率;
(3)摸出2个红球的概率;
师:你能用列表法来解吗?
有没有更简单明了的方法?(学生应
该有预习,能说出用列表法。)
6
5
4
3
2
1
5、合作设计:某商场为了庆祝开业一周年,设立了1个可以自由转动的转盘,并规定:顾客每购买500元以上的商品,就能获得转动转盘两次的机会,如果__________,你将获得一张100元的代金券。
策划方案
1.列出所有可能性
2.写出游戏规则
3.求出顾客获得奖品的概率
6、及时小结:用树状图或表格表示概率可以较方便地求出某些事件发生的概率或策划某些事件使达到预期的概率.但应注意各种情况发生的可能性务必相同
7、拓展趣味:
1)一枚硬币掷于地上,出现正面的概率是;
一枚硬币掷于地上两次,都是正面的概率可以理解为
一枚硬币掷于地上三次,三次都是正面的概率可以理解为
那么,一枚硬币掷于地上n次,n次都是正面的概率为
一枚硬币掷于地上两次,都是正面的概率为,
将两枚硬币同时掷于地上,同时出现正面的概率也为,
掷两枚硬币和一枚硬币掷两次的正面都朝上的概率相同吗?
掷n枚硬币和一枚硬币掷n次的正面都朝上的概率相同吗?
2)一个飞彪盘由两个同心圆组成,两圆的半径之比为1:2,任意投掷一个飞彪.击中B区的概率是击中A区的几倍?
四、课堂小结
教师小结本节重难点:
(1)把事件发生的可能性的大小称为事件发生的概率
如果事件发生的各种可能结果的可能性相同,结果总数为n,事件A发生的可能的结果总数为m,那么事件A发生的概率为。
(2)能用树状法和列表法分析,并求出简单事件A发生的概率。
五、布置作业
1、作业本;
2、课后思考:(选做题)
抽屉中有2个白球,3个红球,他们只有颜色不同.任意摸出一球,大家知道摸到白球的概率为,现在把这5个球分别放到两个相同的盒子中,其中一个盒子中放有1个白球,1个红球,而另一个盒子中放有1个白球和2个红球,再把两个盒子放到抽屉中,问任意模一球,模到白球的概率还是吗?为什么?
若不是,请求出此时摸到白球的概率?
五、板书设计
六、教学反思。
文章来源:http://m.jab88.com/j/68769.html
更多