88教案网

八年级数学矩形菱形与正方形的性质教案9

做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级数学矩形菱形与正方形的性质教案9》,希望对您的工作和生活有所帮助。

16.2矩形、菱形与正方形的性质
16.2.1矩形
教学目标
1.探索并掌握矩形的概念及其特殊的性质。
2.学会识别矩形。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。
教学重点与难点
重点:矩形特殊特征与性质的探索过程。
难点:学生数学说理能力的培养。
教学准备
矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。
教学过程
一、提问。
1.平行四边形的特征:对边(),对角(),对角线()。
2.如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。如果AB=55°,那么∠AD与∠DAE分别等于多少度?为什么?
(让学生回忆平行四边形的特征与识别。)
二、引导观察。
如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?
可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。
问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?
(教师移动D点,使∠=90°,让学生观察。)
从而导人课题:矩形。
三、探索特征。
1.探索。
请你作矩形纸板的对角线,探索矩形有哪些特征,并填空。
(从边、角、对角线入手。)
(1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。
(学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)
2.请你折一折,观察并填空。
(1)矩形是不是中心对称图形?对称中心是()。
(2)是不是轴对称图形?对称轴有几条?()。
四、应用举例。
1.例1如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少?
(矩形的简单的计算问题必须要求学生掌握。此题教师板演,让学生说出理论依据。)
2.请你思考。识别一个四边形是不是矩形的方法。
(学生的回答不一定很完整,可以多让几个学生相互补充,逐步完善,最后教师适当的给以点拔。)
五、巩固练习。
1.如图,在矩形ABCD中,找出相等的线段与相等的角。
2.如图,矩形ABCD的两条对角线交于点O,且∠AOD=120°,你能说明AC=2AB吗?
六、拓展延伸。
1.如图,已知矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=5厘米,求矩形对角线的长。
2.工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么?
七、课堂小结。
这节课你有什么收获?学到了什么?有什么疑问提出来?
16.2.2菱形
教学目标
1.探索并掌握菱形的概念及其特殊的性质。
2.学会识别菱形。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。
教学重难点
重点:菱形特殊特征与性质的探索过程。
难点:学生数学说理能力的培养。
教学准备
矩形纸张、剪刀。
教学过程
一、复习导入。
1.矩形的性质是什么?
2.识别矩形的方法有哪些?
3.导入课题。
二、引导观察。
1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形?(同桌互相帮助。)
2.探索。
请你作该菱形的对角线,探索菱形有哪些特征,并填空。
(从边、对角线入手。)
(1)边:都相等;(2)对角线:互相垂直。
(学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)
问题:你怎样发现的?又是怎样验证的?
(可以指名学生到讲台上讲解一下他的结果。)
3.概括。
菱形特征1:菱形的四条边都相等。
菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
引导学生剖析矩形与菱形的区别。
矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。
4.请你折—折,观察并填空。(引导学生归纳。)
(1)菱形是不是中心对称图形?对称中心是_______。
(2)是不是轴对称图形?对称轴有几条?_______。
5.请你思考。
识别一个四边形是不是菱形的方法
(学生的回答不一定很完整,可以多让几个学生补充,逐步完善,最后教师适当的给以点拨。)
菱形的识别方法。
(1)四条边相等的四边形是菱形。
(2)邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
三、应用举例。
例1如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形。
此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。
四、巩固练习。
在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5,OA=4,OB=3,求这个菱形的周长与两条对角线的长度。(写出解答过程。)
(组内互相检查,指出存在问题。)
五、拓展延伸。
用你认为最简洁的方法画一个菱形。(简要叙述一下步骤。)
六、课堂小结。
请你写一写今天学习了哪些内容?(写完后互相检查、补充。)
16.2.3正方形
教学目标
1.探索并掌握正方形的概念及其特殊的性质。
2.学会识别正方形。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。
教学重难点
重点:正方形特殊特征与性质的探索过程。
难点:数学说理能力的培养。
教学准备
正方形纸张、剪刀。
教学过程
一、提问。
观察正方形有哪些特征?
边_________角__________对角线_________。
进而导入课题:正方形。
二、探索,概括。
1.探索。
观察正方形是否轴对称图形?是否中心对称图形?
正方形可以看作为_______的菱形;
正方形可以看作为_______的矩形。
(让学生探索、讨论,培养学生的合作能力与意识,也可以指名学生讲讲他的发现。)
2.概括。
正方形是中心对称图形,也是轴对称图形。
正方形可以看作为有一个角是直角的菱形;
正方形可以看作为有一组邻边相等的矩形。
三、应用举例。
例3如图,在正方形ABCD中,求∠ABD、∠DAC、∠DOC的度数。
(此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。)
四、巩固练习。
1.如果要用给定长度的篱笆围成一个最大面积的四边形区域,那么应当把这区域围成怎样的四边形?
2.在下列图中,有多少个正方形?有多少个矩形?

五、看谁做的又快又正确?
1.用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?
六、课堂小结。
这节课你有什么收获?学到了什么?有什么疑问提出来?

延伸阅读

《矩形、菱形、正方形》教案


《矩形、菱形、正方形》教案

【教学目标】
1.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.
3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.
4.经历矩形的三种判定方法的引导建模和自主建模过程。
【重、难点】
建模研究课六(市级公开课):范波矩形判定教案2017.3.7(同题异构)重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
难点:综合运用矩形的性质定理与判定定理进行计算与证明.
【教学过程】
一、活动1
1、模型准备:一天,小丽和吴娟到一个商店准备给今天要过生日的肖华买生日礼物,选了半天,她们俩最后决定买相框送给她,在里面摆放她们三个好朋友的相片,为了保证相框摆放的美观性,她们选择了矩形的相框,那么她们是用什么方法可以知道她们拿的就是矩形相框呢?
2、模型构成与求解分析:度量角
抽象1:矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.
已知:在四边形ABCD中,∠A=∠B=∠C=90°
求证:四边形ABCD是矩形。
证明:∵∠A=∠B=90°
∴∠A+∠B=180°
∴AD∥BC
同理可证:AB∥CD
∴四边形ABCD是平行四边形
又∵∠A=90°
∴四边形ABCD是矩形
3、归纳总结:有三个角是直角的四边形是矩形.
追问:两个角是直角的四边形是矩形吗?为什么?
设计意图:从实际生活中遇到的问题出发,建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。
二、活动2
1、学生自主建模:
除度量角度之外,她们需要度量什么也能知道做好的相框是矩形呢?
猜测(1)对角线相等的四边形是矩形吗?
猜测(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.
已知:平行四边形ABCD,AC=BD。
求证:四边形ABCD是矩形。
证明:∵AB=CD,BC=BC,AC=BD
∴△ABC≌△DCB(SSS)
∴∠ABC=∠DCB
∵AB//CD
∴∠ABC+∠DCB=180°
∴∠ABC=∠DCB=90°
又∵四边形ABCD是平行四边形
∴四边形ABCD是矩形
2、判断:(1)对角线互相平分且相等的四边形是矩形吗?
3、归纳总结:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
设计意图:再次从实际生活中遇到的问题出发,从另一角度建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。通过生活经验找出平行四边形与矩形对角线的区别。深化学生对“对角线相等的平行四边形是矩形。”的这一基本模型的理解。
三、模型验证与应用
(一)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添
加的条件是_____________.(写出一种即可)
(二).判断题
1、对角线相等的四边形是矩形。
2、对角线互相平分且相等的四边形是矩形。
3、有一个角是直角的四边形是矩形。
4、四个角都是直角的四边形是矩形。
5、四个角都相等的四边形是矩形。
6、对角线相等且有一个角是直角的四边形是矩形。
7、对角线相等且互相垂直的四边形是矩形。
设计意图:找区别,深化知识。提高学生辨别能力。提高判断能力,能用“说理”来得结论。提高学生“说”的能力。
(三).说一说、练一练:
例1.如图,直线l1∥l2,A、C是直线l1上任意两点,AB⊥l2,CD⊥l2,垂足分别为B、D.线段AB、CD相等吗?为什么?
解:由AB⊥l2,CD⊥l2,
可知AB∥CD.
又因为l1∥l2,
所以四边形ABCD是矩形,
AB=CD.
定义、性质:
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离。两条平行线之间的距离处处相等。
练习:
在直线l1上任意取两点E、F,连接EB、ED、FB、FD。问:△EBD与△FBD的面积有何关系?为什么?
设计意图:通过学生应用新知解决问题后,理解两条平行线之间的距离的定义和性质,同时能进行简单的应用,进一步理解“同底等高”的内涵。
例2如图,在△ABC中,点D在AB上,且AD=CD=BD,DE、DF分别是∠BDC、
∠ADC的平分线。
问题1:这里有几个等腰三角形?它有什么特殊性质?
问题2:由DE、DF分别是∠BDC、∠ADC的平分线,你能想到什么?
建模研究课六(市级公开课):范波矩形判定教案2017.3.7(同题异构)问题3:四边形FDEC是矩形吗?为什么?

练习.
已知:如图,在△ABC中,∠ACB=90°,点D是AB的中点,DE、DF分别是△BDC
△ADC的角平分线。求证:四边形DECF是矩形。

设计意图:“新知”与“旧知”的结合,题1做铺垫,为题2学生自主书写做
好准备。
a2431163
例3已知:如图.矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证四边形EFGH是矩形.

变式:
已知:如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形
建模研究课六(市级公开课):范波矩形判定教案2017.3.7(同题异构)
设计意图:在前一题的铺垫下,通过“变式”进一步提高学生应用新知的能力。
四、小结收获:
矩形判定口诀:任意一个四边形,三角直角定矩形。对于平行四边形,一个直角即可定;对线相等也矩形。
五、反馈练习:
1.下面说法正确的是()
A.有一个角是直角的四边形是矩形;
B.有两条对角线相等四边形是矩形;
C.有一组对边平行,有一个内角是直角的四边形是矩形;
D.有两组对角分别相等,且有一个角是直角的四边形是矩形.
2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.
3.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE其中正确的结论有()A.1个B.2个
C.3个D.4个

矩形、菱形、正方形导学案


课题9.4矩形、菱形、正方形(第1课时)自主空间
学习
目标探索矩形的概念与性质,知道解决矩形问题的基本思想是化为三角形问题来解决,体会数学转化思想
学习
重难点理解矩形的概念和性质,并能应用矩形的概念和性质解决问题
教学流程
预习导航操作:已知Rt△ABC中,BO是斜边AC上的中线。请大家以点O为对称中心,作出此图关于点O的中心对称图形。(点B的对称点为D)
思考、交流:
(1)所得四边形ABCD是不是平行四边形?你能说明理由吗?

(2)四边形ABCD除了具有平行四边形的特点外,还有什么其他的特点吗?我们在小学学过这样的图形吗?
合作探究一、概念探究:有一个角是直角的平行四边形叫矩形。(矩形通常也叫长方形)
1.矩形与平行四边形比较:(小组合作、交流)
相同点:
不同点:
2.你能用以前学过的知识证明矩形的对角线相等吗?
3.小结:矩形的特殊性质
(1)
(2)
二、例题分析:
例1如图,矩形ABCD的对角线AC、BD相交于点O,AB=4cm,
∠AOB=60°。求对角线AC的长。
问题1:在矩形ABCD中,OA与OB有什么关系?
问题2:证明一个三角形是等边三角形的方法有哪些?
变式1:
若把条件∠AOB=60°变为∠AOD=120°,你还能求AC的长吗?

变式2:
若把条件AB=4cm变为AC=4cm,其它条件不变,你能求AB的长吗?

三、展示交流:
1.矩形具有而一般的平行四边形不具有的特点是()
A.对角线相等B.对边相等C.对角相等D.对角线互相平分
2.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()
A.6B.C.2(1+)D.1+、
3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C′,BC′交AD于E,下列结论不一定成立的是()
A.AD=BC,B.∠EBD=∠EDB
C.△ABE≌△CBDD.△ABE≌△C′DE

4.如图,矩形ABCD的两条对角线交于点O,且∠AOD=120°,你能说明AC=2AB吗?
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠ABE=45°,求BC的长

四、提炼总结:
1.在矩形ABCD中,若AC与BD相交于点O。则
(1)OA===
(2)∠DAB====90°

当堂达标1.矩形是具有而平行四边形不一定具有的性质是____(填代号)
①对边平行且相等;②对角线互相平分;③对角相等
④对角线相等;⑤4个角都是90°;⑥轴对称图形
2.矩形是轴对称图形,对称轴是_____又是中心对称图形,对称中心是___矩形两对角线把矩形分成___个等腰三角形
3.矩形的一条边长为3cm,另一边长为4cm,则它的对角线为
,它的面积为
4.矩形的一条对角线长为10,则另一条对角线长为,如果一边长为8,则矩形的面积为
5.矩形ABCD的面积为48,一条边AB的长为6,求矩形的对角线BD的长。

6.如图,矩形ABCD中,AB=4,AD=9,点M在BC上,且BM:MC=1:2,DE⊥AM于点E,求DE的长。

中考数学复习矩形、菱形、正方形教案


章节第五章课题
课型复习课教法讲练结合
教学目标(知识、能力、教育)1.掌握菱形、矩形、正方形的概念,了解它们之间的关系.
2.掌握菱形、矩形、正方形、的有关性质和常用的判别方法.
3.进一步掌握综合法的证明方法,能够证明与矩形、菱形以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论.
4.体会在证明过程中,所运用的归纳、转化等数学思想方法
教学重点菱形、矩形、正方形的概念及其性质
教学难点数学思想方法的体会及其运用。
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.性质:
(1)矩形:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.
(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.
(3)正方形:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.
2.判定:
(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.
(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.
(3)正方形:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.
3.面积计算:
(1)矩形:S=长×宽;(2)菱形:(是对角线)
(3)正方形:S=边长2
4.平行四边形与特殊平行四边形的关系
(二):【课前练习】
1.下列四个命题中,假命题是()
A.两条对角线互相平分且相等的四边形是正方形
B.菱形的一条对角线平分一组对角
C.顺次连结四边形各边中点所得的四边形是平行四边形
D.等腰梯形的两条对角线相等
2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠=60°,则∠AED的大小是()
A.60°.B.50°.C.75°.D.55°
3.正方形的对角线长为a,则它的对角线的交点到各边的距离为()
A、22aB、24aC、a2D、22a
4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱
形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=_____度
5.师傅做铝合金窗框,分下面三个步骤进行
(1)如图,先裁出两对符合规格的铝合金
窗料(如图①),使AB=CD,EF=GH;
(2)摆放成如图②的四边形,则这时窗框
的形状是,根据的数学道理是____.
(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是_________,根据的数学道理是______________
二:【经典考题剖析】
1.下列四边形中,两条对角线一定不相等的是()
A.正方形B.矩形C.等腰梯形D.直角梯形
2.周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()
A.98B.96C.280D.284
3.如图,在菱形ABCD中,∠BAD=80,AB的垂直平分线EF交
对角线AC于点F、E为垂足,连结DF,则∠CDF等于()
A.80°B.70°C.65°D.60°
4.如图,小明想把平面镜MN挂在墙上,要使小明能从镜子里看
见自己的脚?问平面镜至多离地面多高?(已知小明身高1.60米)
5.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、
DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由,
添加的条件__________,理由:
三:【课后训练】
1.正方形具有而矩形不一定具有的性质是()
A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直
2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形
的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四
边形ABEF就是一个最大的正方形,他的判断方法是________-
3.如图,在菱形ABCD中,AC、BD相交于点O,且CA:BD=l:3,若AB=2,求菱形ABCD的面积.
5.在一次数学兴趣小组活动中,组长将两条等宽的长纸条倾斜地重叠着,并问同学,重叠部分是一个什么样的四边形?同学说:这是一个平行四边形.乙同学说:这是一个菱形.请问:你同意谁的看法要解决此题,需建构数学模型,将实际问题转化成数学问题来解决,即已知:如图,四边形ABCD中,AB∥CD,AD∥BC,边CD与边BC上的高相等,试判断四边形ABCD的形状.
6.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P对同时出发,用t(秒)表示移动的时间(0<t<6),那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论
四:【课后小结】

文章来源:http://m.jab88.com/j/64545.html

更多

最新更新

更多