88教案网

菱形教案2

做好教案课件是老师上好课的前提,大家在用心的考虑自己的教案课件。在写好了教案课件计划后,才能更好的在接下来的工作轻装上阵!那么到底适合教案课件的范文有哪些?下面是小编帮大家编辑的《菱形教案2》,仅供参考,欢迎大家阅读。

菱形教案2一、教学目标
1.把握菱形的判定.
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
3.通过教具的演示培养学生的学习爱好.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法.
2.教学难点:菱形判定方法的综合应用.
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1.叙述菱形的定义与性质.
2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法.
此外还有别的两种判定方法,下面就来学习这两种方法.
讲解新课
菱形判定定理1:四边都相等的四边形是菱形.
菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.
分析判定2:
师问:本定理有几个条件?
生答:两个.
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直.
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等.
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形.
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.
例4已知:的对角钱的垂直平分线与边、分别交于、,如图.
求证:四边形是菱形(按教材讲解).
总结、扩展
1.小结:
(1)归纳判定菱形的四种常用方法.
(2)说明矩形、菱形之间的区别与联系.
2.思考题:已知:如图4△中,,平分,,,交于.
求证:四边形为菱形.
八、布置作业
教材P159中9、10、11、13(2)
九、板书设计
十、随堂练习
教材P153中1、2、3

精选阅读

菱形


老师会对课本中的主要教学内容整理到教案课件中,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,我们的工作会变得更加顺利!那么到底适合教案课件的范文有哪些?下面的内容是小编为大家整理的菱形,仅供参考,希望能为您提供参考!

第四章四边形性质探索
3.菱形
一、学生起点分析
学生在学习菱形之前,已具有简单图形旋转的知识和平行四边形的知识,学生完全能借助等腰三角形的旋转直观的理解菱形及菱形的判定和性质。

二、教学任务分析
教科书基于学生上述认识的基础上,提出了本课的具体学习任务:
知识目标
1.理解菱形的定义。
2.经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的基本方法.
3.了解菱形的现实应用和常用判别条件.探索并掌握菱形的判定
情感态度目标:
1.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.
2.在学习过程中,体会数学美。

三、教学过程设计
本节课分成五个环节:
第一环节:创设情境,引入菱形的概念;
第二环节:讲授新课,包括菱形的性质和判定;
第三环节:通过练习,应用和巩固知识;
第四环节:小结;
第五环节:布置作业。
第一环节设情境问题,引入课题
观察一组图片:越王勾践剑、一个衣帽架以及其他学生熟悉的实物图片。
这些图片中有你熟悉的图形吗?
(邻边相等的平行四边形.顺势给出菱形的定义,进而主题)
我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.

第二环节新课
主要环节
(1)根据图片中所反映出的图形的特点,请学生尝试给菱形下定义。
(一组邻边相等的平行四边形叫做菱形.)
(2)通过问题的形式,让学生归纳出菱形的性质。
(3)从对称的角度对菱形进行再认识(包含菱形的画法和判定)。
目的:
1.培养学生的观察能力。让学生观察图形,从直观上把握图形的性质和特点,从而给出菱形的定义。
2.因为菱形是特殊的平行四边形,所以在平行四边形性质的基础上,通过问题,具体的讨论菱形所具有的特殊性质。
3.从对称的角度,对菱形进行再认识,并通过折叠的方法,得到菱形的判别方法,将直观与推理相联系。
对于(2)、(3)大体过程如下:
画一个菱形,然后回答下列问题
如图,在菱形ABCD中,AB=AD,对角线AC,BD相交于点O
(1)图中有哪些线段是相等的?哪些角是相等的?
(2)图中有哪些等腰三角形、直角三角形?
(3)两条对角线AC,BD有什么特定的位置关系?(同学们讨论分析回答)
因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:
1.菱形的四条边都相等.
2.菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。
从对称性上对菱形进行考察:
提问:菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?
(菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直.)

请学生利用对称性画菱形(或者教师呈现以下几种得到图形的方法,请学生判断得到的是什么图形。)
方法一:将一张长方形的纸横对折,再竖对折,然后沿图中的虚线剪下,打开即可。
方法二:如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形.(如图1)
图1图2
方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形.(如图2)

能说一说按这三种方法做的理由吗?大家讨论
刚才通过折纸、剪切,得到了菱形,你能归纳一下菱形的判别方法吗?
分组讨论,然后总结:
菱形的判别方法:
1.一组邻边相等的平行四边形是菱形;
2.对角线互相垂直的平行四边形是菱形;
3.四条边都相等的四边形是菱形

第三环节应用
[例1]如下图,ABCD的两条对角线AC,BD相交于O点,AB=,AO=2,OB=1.

(1)AC,BD有怎样的位置关系?
(2)四边形ABCD是菱形吗?为什么?
[师生共析]从图中知道:AC与BD是相交,从已知条件:AB=,OA=2,OB=1.结合图形知道:这三条线段正好构成三角形.又由于AB2=OA2+OB2,所以可以知道:△AOB是直角三角形,因此可以得出:AC与BD互相垂直.
由于四边形ABCD是平行四边形,它的对角线互相垂直,所以由此可知:平行四边形ABCD是菱形.

第四环节小结
本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下:
菱形的定义:一组邻边相等的平行四边形是菱形.
菱形的性质:边:四条边都相等,对边分别平行
角:对角相等
对角线:互相垂直、平分,每一条对角线平分一组对角.
菱形的判别可以从以下两条线梳理:
在已知图形是四边形的基础上,可以利用四边相等或对角线互相垂直平分
在已知图形是平行四边形的基础上,可以从边或对角线上加强条件得到菱形。
具体可用下图来表示:

第五环节布置作业:
课本习题4.51,2

四.教学设计反思
本节课的主要教学内容包括了菱形的性质和判定两个主要的内容。学生在之前已经学习了平行四边形的性质和判定,这是本节课需要依靠的知识基础。
关于菱形的性质,就是在平行四边形性质的基础上,进一步强化条件得到的。
关于菱形的判定,本课采取的是折纸的方式,利用菱形的对称性,通过折叠和剪开的方法得到图形,并试图让学生去说理“为什么这样做得到的图形是菱形”。在这一过程中,动手操作的方式可以激发学生的兴趣和积极性,同时要引导学生积极的思考,抓住表面现象中的本质。
另一方面,关于菱形的判定,其实也可以在平行四边形判定的基础上,加强条件,通过类比的方式得到。

菱形导学案


老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“菱形导学案”,大家不妨来参考。希望您能喜欢!

18.2.2菱形(二)
年级:九年级学科:数学课型:新授课时间:年月日
执笔:太和县马集中心校审核:马集中心校数学导学案审核组课后反思
【励志语录】
1、不要慨叹生活底痛苦!--慨叹是弱者...—高尔基
2、成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。
3、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的的节约。
【学习目标】
学法指导:仔细阅读,做到有的放矢。
1、能证明菱形的两个判定定理。
2、会用菱形的定义、判定方法判定一个四边形是菱形、有关计算。
3、培养观察能力、动手能力自学能力、计算能力、逻辑思维能力。
【重点】菱形的判定定理的探究与应用。
一、知识链接:
1、什么叫做平行四边形?什么叫做菱形?
2、菱形有哪些性质?
3、菱形与平行四边形有什么共同之处?有什么不同之处?
4、两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?

二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
1、预习内容:自学课本99页—100页,完成P100练习1、2、3。

2、预习测试:
1)从定义出发可知有的平行四边形是菱形。除此之外,我们可以通过研究菱形性质定理的逆命题得到菱形的其他判定方法:
判定定理1:的平行四边形是菱形。或的四边形是菱形。
几何语言为:

判定定理2:。
几何语言为:

4)用以前学过的知识证明:
判定定理1

判定定理2

合作探究
学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
探究点一:判定的应用
下列各句判定菱形的说法是否正确?为什么?
1用两个边长为a的等边三角形纸片拼成的四边形是菱形()
2有一组邻边相等的四边形是菱形()
3对角线互相垂直的四边形是菱形()
4对角线互相平分垂直的四边形是菱形()
5一条对角线平分一组对角的四边形是菱形()
总结:
(l)所给四边形添加的条件不满足三个的肯定不是菱形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
探究点二:判定定理1的应用
1、(教材P109的例3)

2、已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.

探究点三:判定定理2的应用
已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.

探究点四:判定定理的实际应用
做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

四.小结提升
学法指导:1、对照学习目标找差补缺。2、画出知识树。
通过本节课的学习,你有什么收获?你还有什么困惑?

画知识树

五、达标测试
学法指导:1、分层达标,敢于突破,横向比较,找出差距。
2、完成较早的小组与同学把答案写到小黑板上奖励分5’
3、对子互改,组长验收,教师查阅。
A.基础达标
判定:(1)对角线互相垂直的平行四边形是菱形。()
(2)对角线互相平分的四边形是菱形。()
(3)两组对边分别平行,且对角线垂直的四边形是菱形。()
(4)两组对边分别相等,且对角线互相垂直的四边形是菱形。()
B.能力测试
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
1.下列条件中,能判定四边形是菱形的是().
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

菱形的判定


第四章四边形性质探索
3.菱形

一、学生起点分析
学生在学习菱形之前,已具有简单图形旋转的知识和平行四边形的知识,学生完全能借助等腰三角形的旋转直观的理解菱形及菱形的判定和性质。

二、教学任务分析
教科书基于学生上述认识的基础上,提出了本课的具体学习任务:
知识目标
1.理解菱形的定义。
2.经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的基本方法.
3.了解菱形的现实应用和常用判别条件.探索并掌握菱形的判定.
情感态度目标:
1.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.
2.在学习过程中,体会数学美。

三、教学过程设计
本节课分成五个环节:
第一环节:创设情境,引入菱形的概念;
第二环节:讲授新课,包括菱形的性质和判定;
第三环节:通过练习,应用和巩固知识;
第四环节:小结;
第五环节:布置作业。
第一环节设情境问题,引入课题
观察一组图片:越王勾践剑、一个衣帽架以及其他学生熟悉的实物图片。
这些图片中有你熟悉的图形吗?
(邻边相等的平行四边形.顺势给出菱形的定义,进而主题)
我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.

第二环节新课
主要环节
(1)根据图片中所反映出的图形的特点,请学生尝试给菱形下定义。
(一组邻边相等的平行四边形叫做菱形.)
(2)通过问题的形式,让学生归纳出菱形的性质。
(3)从对称的角度对菱形进行再认识(包含菱形的画法和判定)。
目的:
1.培养学生的观察能力。让学生观察图形,从直观上把握图形的性质和特点,从而给出菱形的定义。
2.因为菱形是特殊的平行四边形,所以在平行四边形性质的基础上,通过问题,具体的讨论菱形所具有的特殊性质。
3.从对称的角度,对菱形进行再认识,并通过折叠的方法,得到菱形的判别方法,将直观与推理相联系。
对于(2)、(3)大体过程如下:
画一个菱形,然后回答下列问题
如图,在菱形ABCD中,AB=AD,对角线AC,BD相交于点O
(1)图中有哪些线段是相等的?哪些角是相等的?
(2)图中有哪些等腰三角形、直角三角形?
(3)两条对角线AC,BD有什么特定的位置关系?(同学们讨论分析回答)
因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:
1.菱形的四条边都相等.
2.菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。

从对称性上对菱形进行考察:
提问:菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?
(菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直.)

请学生利用对称性画菱形(或者教师呈现以下几种得到图形的方法,请学生判断得到的是什么图形。)
方法一:将一张长方形的纸横对折,再竖对折,然后沿图中的虚线剪下,打开即可。
方法二:如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形.(如图1)
图1图2
方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形.(如图2)

能说一说按这三种方法做的理由吗?大家讨论
刚才通过折纸、剪切,得到了菱形,你能归纳一下菱形的判别方法吗?
分组讨论,然后总结:
菱形的判别方法:
1.一组邻边相等的平行四边形是菱形;
2.对角线互相垂直的平行四边形是菱形;
3.四条边都相等的四边形是菱形

第三环节应用
[例1]如下图,ABCD的两条对角线AC,BD相交于O点,AB=,AO=2,OB=1.

(1)AC,BD有怎样的位置关系?
(2)四边形ABCD是菱形吗?为什么?
[师生共析]从图中知道:AC与BD是相交,从已知条件:AB=,OA=2,OB=1.结合图形知道:这三条线段正好构成三角形.又由于AB2=OA2+OB2,所以可以知道:△AOB是直角三角形,因此可以得出:AC与BD互相垂直.
由于四边形ABCD是平行四边形,它的对角线互相垂直,所以由此可知:平行四边形ABCD是菱形.

第四环节小结
本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下:
菱形的定义:一组邻边相等的平行四边形是菱形.
菱形的性质:边:四条边都相等,对边分别平行
角:对角相等
对角线:互相垂直、平分,每一条对角线平分一组对角.

菱形的判别可以从以下两条线梳理:
在已知图形是四边形的基础上,可以利用四边相等或对角线互相垂直平分
在已知图形是平行四边形的基础上,可以从边或对角线上加强条件得到菱形。
具体可用下图来表示:

第五环节布置作业:
课本习题4.51,2

四.教学设计反思
本节课的主要教学内容包括了菱形的性质和判定两个主要的内容。学生在之前已经学习了平行四边形的性质和判定,这是本节课需要依靠的知识基础。
关于菱形的性质,就是在平行四边形性质的基础上,进一步强化条件得到的。
关于菱形的判定,本课采取的是折纸的方式,利用菱形的对称性,通过折叠和剪开的方法得到图形,并试图让学生去说理“为什么这样做得到的图形是菱形”。在这一过程中,动手操作的方式可以激发学生的兴趣和积极性,同时要引导学生积极的思考,抓住表面现象中的本质。
另一方面,关于菱形的判定,其实也可以在平行四边形判定的基础上,加强条件,通过类比的方式得到。

文章来源:http://m.jab88.com/j/64537.html

更多

最新更新

更多