为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“认识二次函数”但愿对您的学习工作带来帮助。
34.1认识二次函数(第1课时)教案
教学任务分析
教学
目标
知识与技能
1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;[
3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;
过程与方法
通过画二次函数的图象,提高动手能力;
经历画图、观察、分析、总结、归纳的过程,总结出二次函数的性质.
情感态度价值观
体会数形结合的思想方法;
重点
二次函数的图象和性质;
难点
函数性质的应用.
教学流程安排
活动说明
活动目的
活动1回顾一次函数
活动2二次函数概念学习
活动3解析
活动4观察
活动5布置作业
为二次函数的学习做准备
学二次函数的有关概念
巩固二次函数
小结复习
加强练习
课前准备
教具
学具
补充材料
电脑、投影仪
课件资源、投影仪
教学过程设计
问题与情景
师生行为
设计意图
活动1:
1.我们以前学过函数,函数是用来描述一个量与另一个量之间的对应关系的,大家回忆一下,我们到现在都学过哪些函数?
2.请描述一下你对一次函数、反比例函数是如何理解的.
3.在现实生活中,我们除了接触到一次函数、反函数,我们还会遇到另外一种函数——二次函数,现在我们就来认识二次函数.
活动2:
我们看引言中正方体的表面积的问题.
正方体的六个面是全等的正方形(图26.1–1),设正方体的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为
y=6x2①
我们再来看几个问题.
问题1多边形的对角线数d与边数n有什么关系?
问题2某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎么样表示?
小组讨论,引导学生找出其中的量与量之间的关系,列出函数式.
活动3:解析
问题1由图26.1–2可以想出,如果多边形有n条边,那么它有________个顶点.从一个顶点出发,连接与这点不相邻的各顶点,可以作_________条对角线.
因为像线段MN与NM那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数
,
即
.②
②式表示了多边形的对角线数d与边数n之间的关系,对于n的每一个值,d都有一个对应值,即d是n的函数.
问题2这种产品的原产量是20件,一年后的产量是_________件,再经过一年后的产量是_________件,即两年后的产量为
y=20(1+x)2,
即
y=20x2+40x+20.③
③式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.
活动4:观察
函数①②③有什么共同点?与我们已学过的正比例函数,反比例函数和一次函数有什么不同?
在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如
y=ax2+bx+c(a,b,c是常数,a≠0)
的函数,叫做二次函数(quadraticfunction).其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项.
现在我们学习过的函数有:一次函数y=ax+b(a≠0),其中包括正比例函数y=kx(k≠0),反比例函数和二次函数y=ax2+bx+c(a≠0).
可以发现,这些函数的名称都反映了函数表达式与自变量的关系.
活动5:练习
1.一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.
2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛场次数m与球队数n之间的关系式.
活动6:小结
学生讨论,总结出本节所学的知识.
师引导设问
学生回答
师引导设问
学生活动:一般地,形如y=kx+b(k、b是常数,k≠0)的函数是一次函数,例如:y=2x+1,y=x等都是一次函数.形如y=(k≠0)的函数就是反函数,例如:y=.
引导设问
学生解答,教师点评
学生解答教师点评
学生解答教师巡视指导
学生解答教师点评
学生回答教师点评
学生解答教师点评
并给予鼓励
生回答问题,教师点评.
学生讨论
回忆到现在都学过的函数
回忆一次函数、反比例函数的概念
引出二次函数
从实际情境中感受二次函数
认识二次函数
加深对二次函数的认识
学二次函数的概念
加深一次函数、正比例函数、反比例函数、二次函数的认识
对二次函数的概念进行巩固
总结本节知识
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“对函数的再认识”,仅供参考,欢迎大家阅读。
2.1对函数的再认识(2)
课型新授案序:2
学习目标:
1.经历探索,分析函数自变量取值范围的过程,进一步体验变量之间的数量关系.
2.认识函数的三种表示方法及其优缺点,会确定自变量取值范围.
3.通过函数的学习,体会事物是相互联系的,有规律的变化的.
学习重点:会求简单函数的自变量取值范围及函数值。
学习难点:会根据实际问题求出函数关系式
学习过程:
一、学前准备
(1)上节课我们举了许多关于函数的例子,你还记得吗?
(2)通过上节课的函数例子可以发现,这些函数都是用数学式子表示的.你知道函数还可以用什么方法表示吗?
(3)一枝蜡烛长2Ocm,点燃后每小时燃烧5cm,求蜡烛点燃后剩余长度y(cm)与燃烧时间x(h)之间的关系式,并指出x的取值范围.
二、探究活动
(一)独立思考
(1)第十四届全国图书展销会于2004年5月12日-5月23日在桂林市国际会展中心举行.本届书市总收入约1800万元(包括批发和零售),其中零售收入约500万元展销会期间的零售收入统计如下:
日期/日121314151617181920212223
零售收入/万元404248504642403835374244
展销会期间,哪一日的零售收入最高?②零售收入是日期的函零售收入是日期的函数吗?为什么?它是用什么方法表示的?
(2)如图24(图见40页)是某气象站用自动温度记录仪描出的某一天气温变化情况的曲线.它直观地反映了变量T(℃)与t(h)之间的对应关系.根据图象提供的信息,回答下列问题:
①在这一天中,何时气温最高?何时气温最低?
②气温T(℃)是时刻t(h)的函数吗?为什么?它是用什么方法表示的?
⑶表示函数的方法有哪几种。你能举例说明吗
(二)师生探究合作交流
例3求下列函数的自变量x的取值范围
⑴⑵⑶⑷
例4用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与它的
一边长x(m)之间的关系式,并求出z的取值范围.
(三)应用探究
1、求下列函数的自变量x的取值范围
2、小明设计了一个计算机的计算程序,输入的数x和输出的数y的数据如下:
输入的数Z2345
输出的数y12345
23456
在这个问题中,y是Z的函数吗?它们之间的函数关系是用哪种方法表示的?你能用一个函数表达式表示它们之间的关系吗?
3、在边长分别为6cm,8cm的矩形纸片的四个角上,各剪去一个边长为xcm的小正方形,求剩余纸片的面积S与x之间的函数关系市,并指出x的取值范围。
三、学习体会
通过本节课的学习,你有什么体会和收获?
四、自我测试
1、求下列函数的自变量x的取值范围
⑴⑵⑶⑷
2、等腰三角形的周长为20cm,腰长为xcm,底边长为ycm,则y与x之间的函数关系式为。自变量x的取值范围是,当x=8时y=cm
3、某自行车存放处在星期日的存放量为4000辆次,其中电动车存车费是每辆一次0.50元,普通车存车费是每辆一次0.20元,若普通车存车数为x辆,存车费总收入为y元,则y与x之间的函数关系式及自变量x的取值范围为
老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“变量与函数(2)导学案”,仅供参考,希望能为您提供参考!
班级姓名科目使用
时间
课题19.1.1变量与函数(2)
重难点学习重点:函数的概念及确定自变量的取值范围。
学习难点:认识函数,领会函数的意义。
【自主复习知识准备】
请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。
【自主探究知识应用】
请看书72——74页内容,完成下列问题:
1、思考书中第72页的问题,归纳出变量之间的关系。
2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
补充小结:
(1)函数的定义:
(2)必须是一个变化过程;
(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。
三、巩固与拓展:
例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200千米时,油箱中还有多少汽油?
【当堂检测知识升华】
1、判断下列变量之间是不是函数关系:
(1)长方形的宽一定时,其长与面积;
(2)等腰三角形的底边长与面积;
(3)某人的年龄与身高;
2、写出下列函数的解析式.
(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.
(2)汽车加油时,加油枪的流量为10L/min.
①如果加油前,油箱里还有5L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;
②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.
(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.
【课后作业知识反馈】
1、P74---75页:1,2题
我的收获
(想和老师说)
纠错台
文章来源:http://m.jab88.com/j/62664.html
更多