88教案网

八年级下册数学11.3证明(1)教学案

老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们知道适合教案课件的范文有哪些呢?下面是小编帮大家编辑的《八年级下册数学11.3证明(1)教学案》,欢迎您参考,希望对您有所助益!

11.3证明(1)
教学目标:
1.了解证明的基本步骤和书写格式.
2.能从“同位角相等,两直线平行”这个基本事实出发,证明平行线的判定定理,并能简单应用这些结论.
3.感受数学的严谨、结论的确定,初步养成言之有理、落笔有据的推理习惯,发展初步的演绎推理能力.
重点:从“同位角相等,两直线平行”这个基本事实出发,证明平行线的判定定理,并能简单应用这些结论.
难点:证明的基本步骤和书写格式,发展初步的演绎推理能力.
一、预习展示
1、证明的必要性质:通过特殊的事例得到的结论可能正确,也可能不正确,还需要加以证实。
2、证明的定义:用推理的方法证实真命题的过程叫做证明。
3、命题证明的步骤:(1)根据命题,画出图形;(2)根据条件,结合图形,写出已知、求证,已知部分是已知事项(即命题的条件),求证部分是论证的事项(即命题的结论);(3)写出证明的过程。

4、已知:如图,∠BAD=∠DCB,∠1=∠3。
求证:AD∥BC.

5、证明:同角的余角相等。

二、探究学习
(一)、情境创设:
一个数学结论的正确性如何确认呢?
其实数学家们早就遇到了这样的问题,人类对数学命题进行证明的研究已有两千多年的历史了.公元前3世纪,古希腊数学家欧几里得写出了举世闻名的巨著《原本》,在这本书里,他挑选了一些基本定义和基本事实作为证实其他命题的出发点,推导出了400条定理.
(二)、探索活动:
1.本教材选用下列真命题作为基本事实:
同位角相等,两直线平行.
两直线平行,同位角相等.
两边和它们的夹角对应相等的两个三角形全等.
两角和它们的夹边对应相等的两个三角形全等.
三边对应相等的两个三角形全等.
此外,等式的有关性质和不等式的有关性质也都看作基本事实.
2.探索“同角的补角相等”
(三)、交流与思考
________________________________证明.______________________为定理.
已经证明的定理也可以作为以后推理的依据.
思考:如何证明“同位角相等”呢?

(三)、例题讲解
例1、证明:内错角相等,两直线平行.
定理:内错角相等,两直线平行.
尝试:证明:“同旁内角互补,两直线平行”.
(1)根据命题,画出图形;
(2)根据所画图形,写出已知、求证;
(3)说说你的证明思路.

例2、如何证明“对顶角相等”(1)仿照问题1完成推理:jAb88.CoM

三、课堂整理
(一)小结本节课你有什么收获?
(二)思考:1、求证:平行于第三条直线的两直线平行
要求:画出图形,写出已知,求证,不要求证明.
2、已知:如图,∠1=∠2,CE平分∠ACD.
求证:AB∥CD.
四、当堂训练:
1、课本P136页练习题
2、已知:如图,直线a与直线b被直线c所截,
∠1=∠2,求证:a∥b.

五、拓展与提高
已知:如图,AB=CD,BC=AD,AE平分平分∠BAC,交BC于点E,CF平分∠DCA,交AD于点F,求证:AE∥FC。

相关阅读

八年级上册数学全册教学案


教案课件是老师上课中很重要的一个课件,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,未来工作才会更有干劲!你们知道多少范文适合教案课件?以下是小编为大家精心整理的“八年级上册数学全册教学案”,仅供参考,欢迎大家阅读。

第三十三学时:14.1.4多项式除以单项式
一、学习目标:1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重点:多项式除以单项式的运算法则及其应用
难点:探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提问:①说说你是怎样计算的②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2.本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习:教科书练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
E、多项式除以单项式法则
第三十四学时:14.2.1平方差公式
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重点:平方差公式的推导和应用
难点:理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999(2)998×1002

导入新课:计算下列多项式的积.
(1)(x+1)(x-1)(2)(m+2)(m-2)

(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)

例2:计算:
(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

第三十五学时:4.2.2.完全平方公式(一)
一、学习目标:1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用
难点:理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式计算:
(1)1022(2)992
随堂练习
第三十六学时:14.2.2完全平方公式(二)
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用
难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+()(2)a-b+c=a-()
(3)a-b-c=a-()(4)a+b+c=a-()
2.判断下列运算是否正确.
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习

五、小结:去括号法则
六、作业:教科书习题
第三十七学时:14.3.1用提公因式法分解因式
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的最大公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:(a-b)2=(b-a)2
六、作业1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)2012+(-2)2013

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

第三十八学时:14.3.2用“平方差公式”分解因式
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式.
难点:将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式
(a+b)(a-b)=a2-b2(1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b)(2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).

9m2-4n2
=(3m)2-(2n)2
=(3m+2n)(3m-2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2;(2)2x3-8x.

补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)(a2-1).

五、课堂练习教科书练习

六、作业1、教科书习题
2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

第三十九学时:14.3.2用“完全平方公式”分解因式

一、学习目标:
1.使学生会用完全平方公式分解因式.
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点:让学生掌握多步骤、多方法分解因式方法
难点:让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点.
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
练一练.下列各式是不是完全平方式?
(1)a2-4a+4;(2)x2+4x+4y2;

(3)4a2+2ab+b2;(4)a2-ab+b2;

四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.

例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.

课堂练习:教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2-12(2a+b)+9;

五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

六、作业:1、
2、分解因式:
X2-4x+42x2-4x+2(x2+y2)2-8(x2+y2)+16(x2+y2)2-4x2y2

45ab2-20a-a+a3a-ab2a4-1(a2+1)2-4(a2+1)+4

第四十学时:15.1.1从分数到分式
一学习目标

【学习过程】
一、阅读教材
二、独立完成下列预习作业:
1、单项式和多项式统称整式.
2、表示÷的商,可以表示为.
3、长方形的面积为10,长为7cm,宽应为cm;长方形的面积为S,长为a,宽应为.
4、把体积为20的水倒入底面积为33的圆柱形容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.
一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.
◆◆分式和整式统称有理式◆◆
三、合作交流,解决问题:
分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.
1、当x时,分式有意义;
2、当x时,分式有意义;
3、当b时,分式有意义;
4、当x、y满足时,分式有意义;
四、课堂测控:
1、下列各式,,,,,,,,x+y,,,,,0中,
是分式的有;
是整式的有;
是有理式的有

3、下列各式中,无论x取何值,分式都有意义的是()
A.B.C.D.

4、当x时,分式的值为零

5、当x时,分式的值为1;当x时,分式的值为-1.

第四十一学时:§16.1.2分式的基本性质--约分自主合作学习
一、学习目标

二、学习过程
阅读教材

独立完成下列预习作业:
1、分式的分子与分母同乘(或除以)一个不为0的整式,分式的值不变.
即或(C≠0)
2、填空:⑴;
⑵;(b≠0)
3、利用分式的基本性质:将分子和分母的公因式约去,这样的分式变形叫做分式的约分;经过约分后的分式,其分子与分母没有公因式,像这样的分式叫做最简分式.
三、合作交流,解决问题:
将下列分式化为最简分式:
⑴⑵⑶
四、课堂测控:
1.分数的基本性质为:分式的分子分母同乘(或除以)一个不为0的整式,分式的值不变.
用字母表示为:
2.把下列分数化为最简分数:(1)=;(2)=;(3)=.
分式的基本性质为:.
3、填空:①②

③④
4、分式,,,中是最简分式的有()
A.1个B.2个C.3个D.4个

第四十二学时:§16.1.2分式的基本性质--通分自主合作学习
一、学习目标

二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
①与的最简公分母是;②与的最简公分母是;
③与最简公分母是;④与的最简公分母是.
★★如何确定最简公分母?一般是取各分母的所有因式的最高次幂的积
三、合作交流,解决问题:
1、通分:⑴与⑵,
2、通分:⑴与;★⑵,.

四、课堂测控:
1、分式和的最简公分母是.分式和的最简公分母是.
2、化简:
3、分式,,,中已为最简分式的有()
A、1个B、2个C、3个D、4个
4、化简分式的结果为()
A、B、C、D、
5、若分式的分子、分母中的x与y同时扩大2倍,则分式的值()
A、扩大2倍B、缩小2倍C、不变D、是原来的2倍
6、不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()
A、10B、9C、45D、90
7、不改变分式的值,使分子、分母最高次项的系数为整数,正确的是()
A、B、C、D、
8、通分:
⑴与⑵与

第四十三学时§16.2.1分式的乘除自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、观察下列算式:
⑴⑵
请写出分数的乘除法法则:
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
2、分式的乘除法法则:(类似于分数乘除法法则)
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

除法法则:除以一个数等于乘以这个数的倒数.

3、分式乘方:即分式乘方,是把分子、分母分别乘方.
三、合作交流,解决问题:
1、计算:
⑴;⑵
2、计算:
⑴;⑵.

4、计算:⑴⑵

四、课堂测控:
1、计算:

第四十四学时:§16.2.2分式的加减自主合作学习
一、学习目标

二、学习过程
阅读教材
独立完成下列预习作业:
1、填空:
①与的相同,称为分数,+=,法则是;
②与的不同,称为分数,+=,运算方法为;
2、与的相同,称为分式;与的不同,称为分式.
3、分式的加减法法则同分数的加减法法则类似
①同分母分式相加减,分母,把分子;

②异分母分式相加减,先,变为同分母的分式,再.

4.,的最简公分母是.
5、在括号内填入适当的代数式:

三、合作交流,解决问题:
1、计算:⑴+⑵-⑶+

2、计算:⑴⑵+
⑶⑷++
3、计算:

四、课堂测控:

3、计算:⑴⑵
第四十五学时:§16.2.3整数指数幂自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、回顾正整数幂的运算性质:
⑴同底数幂相乘:.⑵幂的乘方:.
⑶同底数幂相除:.⑷积的乘方:.
⑸.⑹当a时,.
2、根据你的预习和理解填空:
3、一般地,当n是正整数时,

4、归纳:1题中的各性质,对于m,n可以是任意整数,均成立.
三、合作交流,解决问题:
1、计算:⑴⑵

2、计算:⑴⑵

四、课堂测控:
1、填空:
⑴;.⑵;.
⑶;.⑷;(b≠0).

2、纳米是非常小的长度单位,1纳米=米,把1纳米的物体放到乒乓球上,如同将乒乓球放到地球上,1立方毫米的空间可以放个1立方纳米的物体,(物体间的间隙忽略不计).

3、用科学计数法表示下列各数:
①0.000000001=;②0.0012=;
③0.000000345=;④-0.0003=;
⑤0.0000000108=;⑥5640000000=;
4、计算:
⑴⑵⑶
5、计算:
⑴⑵

第四十六学时§16.3-1分式方程自主合作学习
一、学习目标

二、学习过程
阅读教材
独立完成下列预习作业:
1、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
分析:设江水的流速为千米/时,则轮船顺流航行速度为千米/时,逆流航行速度为千米/时;顺流航行100千米所用时间为小时,逆流航行600千米所用时间为小时.
根据两次航行所用时间相等可得到方程:

方程①的分母含有未知数,像这样分母中含有未知数的方程叫做分式方程.
我们以前学习的方程都是整式方程,分母中不含未知数.
★★2、解分式方程的基本思路是把分式方程转化为正式方程.
其具体做法是:去分母、解整式方程、检验.
三、合作交流,解决问题:
1、试解分式方程:
⑴⑵
解:方程两边同乘得:解:方程两边同乘得:
去括号得:
移项并合并得:
解得:
经检验:是原方程的解.经检验:不是原方程的解,即原方程无解

分式方程为什么必须检验?如何检验?
.
2、解分式方程
⑴⑵

四、课堂测控:
1、下列哪些是分式方程?
⑴;⑵;⑶;
⑷;⑸;⑹.
2、解下列分式方程:

第四十七学时:§16.3-2分式方程自主合作学习
一、学习目标

二、学习过程
阅读教材
独立完成下列预习作业:
问题:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?
分析:甲队1个月完成总工程的,若设乙队单独施工1个月能完成总工程的.
则甲队半个月完成总工程的;乙队半个月完成总工程的;两队半个月完成总工程的;
解:设乙队单独施工1个月能完成总工程的,则有方程:
方程两边同乘得:
解得:x=
经检验:x=符合题设条件.
∴队施工速度快.
三、合作交流,解决问题:
问题:一项工程要在限定期内完成,如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成;如果两组合做3天后,剩下的工程由第二组单独做,正好在规定日期内完成。问规定日期是多少天?
四、课堂测控:(小试身手)
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算:
⑴甲队单独完成这项工程刚好如期完成;
⑵乙队单独完成这项工程要比规定日期多用5天;
⑶若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?

列分式方程解应用题的一般步骤:
审:分析题意,找出等量关系;
设:选择恰当的未知数,注意单位;
列:根据等量关系正确列出方程;
解:认真仔细;
验:检验方程和题意;
答:完整作答.

八年级下册数学《三角形的证明》知识点复习


一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“八年级下册数学《三角形的证明》知识点复习”,相信能对大家有所帮助。

八年级下册数学《三角形的证明》知识点复习

第一节.等腰三角形

1.性质:等腰三角形的两个底角相等(等边对等角).

2.判定:有两个角相等的三角形是等腰三角形(等角对等边).

3.推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”).

4.等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.
判定定理:(1)有一个角是60°的等腰三角形是等边三角形;

(2)三个角都相等的三角形是等边三角形.

第二节.直角三角形

1.勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方.
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.

2.含30°的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.

3.直角三角形斜边上的中线等于斜边的一半。

要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.

4.斜边和一条直角边分别相等的两个直角三角形全等。

第三节.线段的垂直平分线

1.线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.

2.三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.该点就是三角形的外心。以此外心为圆心,可以将三角形的三个顶点组成一个圆。

3.如何用尺规作图法作线段的垂直平分线:

分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN就是线段AB的垂直平分线。

第四节.角平分线

1.角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.

2.三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心

通用篇

1.真命题与假命题

真命题:真命题就是正确的命题,即如果命题的条件成立,那么结论一定成立。

假命题:条件和结果相矛盾的命题是假命题,

命题与逆命题

命题包括已知和结论两部分;逆命题是将原命题的已知和结论交换;

在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题。其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理。这两个定理称为互逆定理。

2、证明命题的一般步骤:

(1)理解题意:分清命题的条件(已知),结论(求证);

(2)根据题意,画出图形;

(3)结合图形,用数学语言写出“已知”和“求证”;

(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因“

(5)依据思路,运用数学语言条理清晰地写出证明过程;

(6)检查表达过程是否正确,完整.

3、用反证法证明几何命题的步骤:

(1)假设命题的结论不成立.
(2)由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推导直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾.
(3)从而判断假设错误,原命题成立.

八年级数学上册11.3多边形及其内角和学案


为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“八年级数学上册11.3多边形及其内角和学案”,仅供参考,欢迎大家阅读。

第十一章三角形
11.3多边形及其内角和
一.学习目标
1.掌握多边形的定义;多边形的内角和(n-2)×180°,外角和为360°。
2.在学习过程中培养学生的推理能力和发散思维。及化归思想的应用。
3.激发学生的学习情趣。
二.学习重难点
多边形的内角和与外角和及其推理过程
三.学习过程
第一课时多边形的定义
(一)构建新知
1.阅读教材19~20页
(1)由一些______首尾顺次相连的______图形叫做多边形。
(2)连接多边形_________的两个顶点的线段,叫做多边形的对角线。
(3)边数最少的多边形是______形。
(4)沿任意边切割分布于同侧的是______多边形;
异侧的是______多边形。
(5)每个角都相等,每条边都相等的
多边形叫_____多边形。

(二)合作学习
1.观察多边形图形。

(1)用代数式表示n边形的对角线条数。

(2)用代数式n表示分成的三角形个数。

(三)课堂检查
1.图中____________
_________是凹多边形。

2.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:(1)__________;(2)____________。
3.如图所示,将多边形分割成三角形、图
(1)中可分割出2个三角形;图(2)中
可分割出3个三角形;图(3)中可分
割出4个三角形;由此你能猜测出,n边形可以分割出________个三角形。
4.一块四边形纸片,∠A与∠C都是直角,
且AB=BC=6,如果AD+CD=10cm,这块纸片的面积
是______。
5.若从多边形的某一顶点出发只能画五条对角线,则它是()
A.五边形B.六边形C.七边形D.八边形
6.过多边形的一个顶点的所有对角线的条数与这些对角线分多边形所得三角形的个数之和为2014,对否?请说出理由。若对,是几边形?
(四)学习评价
(五)课后练习
1.学习指要8~9页
2.教材24~25页1题,8题

第二课时多边形的内角和
(一)构建新知
1.阅读教材21~22页
(1)三角形的内角和是_______;四边形的内角和是________。
(2)下图是五边形和六边形,你知道它的内角和是_______和________。

(3)多边形的内角和计算起源于三角形,多边形的内角和等于____________。

(二)合作学习
1.如图,过正六边形ABCDEF的顶点A、E作两
条互相平行的直线l1和l2,若∠1=20°。
(1)正六边形的每个内角是多少度?
(2)求∠2的度数。
(三)课堂检查
1.一个多边形的内角和比四边形内角和的3倍多180°,
这个多边形的边数是________。
2.如图,若该图案是由8个全等的等腰梯形拼成的,则
图中的∠1=______。
3.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、
∠DCB的平分线相交于点O,则∠COD的度数是_________。
4.如图,把一直尺放置在一个三角形纸片上,则下列结论
正确的是()。
A.∠1+∠6>180°B.∠2+∠5<180°
C.∠3+∠4<180°D.∠3+∠7>180°
5.如图,已知△ABC为直角三角形,∠C=90°,若
沿图中虚线剪去∠C,则∠1+∠2=()。
A.90°B.135°C.270°D.315°
6.一个凸多边形,除了一个内角后,其余各内角之和为2750°,
(1)这是几边形?
(2)这个内角是多少度?

(四)学习评价
(五)课后练习
1.学习指要10~11页
2.教材24~25页2题,4题,5题,7题,9题

第三课时多边形的外角和
(一)构建新知
1.阅读教材22~23页
(1)看图填空:三角形的外角和是_______,四边形的外角和是______,
五边形的外角和是____________。

(2)多边形的外角和是________________。

(二)合作学习
1.将正三角形、正四边形、正五边形按如图所示的位置摆
放.如果∠3=32°,
(1)计算正三角形,正四边形,正五边形
每一个角的度数。
(2)求∠1+∠2和的度数。

(三)课堂检查
1.正多边形的一个外角等于20°,则这个正多边形的边数是________。
2.若一个正多边形的一个内角等于135°,那么这个多边形是正____边形。
3.小明从点O出发,沿直线前进10米,向左转n°(0<n<180),再沿直线前进10米,又向左转n°…照这样走下去,小明恰能回到O点,且所走过的路程最短,则n的值等于________。
4.如图,五边形ABCDE中,AB∥CD,∠1、∠2、
∠3分别是∠BAE、∠AED、∠EDC的外角,
则∠1+∠2+∠3=______。
5.一个正方形和两个等边三角形的位置如图所
示,若∠3=60°,则∠1+∠2=()。
A.80°B.90°C.120°D.180°
6.一个多边形截去一个角后,形成另一个多
边形的内角和为720°,那么原多边形的边数为()。
A.5B.5或6C.5或7D.5或6或7
(四)学习评价
(五)课后练习
1.学习指要11~12页
2.教材24~25页3题,6题,10题

文章来源:http://m.jab88.com/j/60274.html

更多

最新更新

更多