教案课件是每个老师工作中上课需要准备的东西,大家在认真准备自己的教案课件了吧。我们制定教案课件工作计划,可以更好完成工作任务!你们清楚教案课件的范文有哪些呢?小编特地为您收集整理“八年级数学下册《三角形的证明》知识点总结苏教版”,欢迎您阅读和收藏,并分享给身边的朋友!
八年级数学下册《三角形的证明》知识点总结苏教版
一、等腰三角形
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴.
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合.
(3)等边对等角:等腰三角形的两个底角相等.提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.
二、直角三角形
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函数值
3.互余两角的三角函数关系:sin(90°-α)=cosα;…
4.三角函数值随角度变化的关系
5.查三角函数表
三、线段的垂直平分线
1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
四、角平分线
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。
老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级上册《全等三角形、等腰三角形》知识点总结》,欢迎大家与身边的朋友分享吧!
八年级上册《全等三角形、等腰三角形》知识点总结
一.定义
1.全等形:形状大小相同,能完全重合的两个图形.
2.全等三角形:能够完全重合的两个三角形.
二.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
等腰三角形:有两条边相等的三角形叫等腰三角形.
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
等腰三角形性质:(1)具有一般三角形的边角关系
(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;
(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.
等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形.
等边三角形性质:①具备等腰三角形的一切性质。
②等边三角形三条边都相等,三个内角都相等并且每个都是60。
5.等腰三角形的判定:
①利用定义;②等角对等边;
等边三角形的判定:
①利用定义:三边相等的三角形是等边三角形
②有一个角是60的等腰三角形是等边三角形.
含30锐角的直角三角形边角关系:在直角三角形中,30锐角所对的直角边等于斜边的一半。
三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家应该开始写教案课件了。认真做好教案课件的工作计划,才能完成制定的工作目标!你们知道多少范文适合教案课件?小编特地为大家精心收集和整理了“七年级下册数学知识点:三角形”,但愿对您的学习工作带来帮助。
七年级下册数学知识点:三角形
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
文章来源:http://m.jab88.com/j/59563.html
更多