课题菱形共2课时
第1课时课型新课
教学目标1.知识与技能:了解菱形的概念及其与平行四边形的关系;掌握菱形的性质,并能运用菱形的性质进行简单的计算;了解菱形既是中心对称图形又是轴对称图形
2.过程与方法:经历探索菱形的性质的过程,在操作活动和观察与分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会推理论证的基本方法
3.情感态度与价值观:通过对菱形与平行四边形关系的探讨,体会集合的思想,培养学生的观察能力和学习兴趣,并从中认识菱形的图形美
重点难点1、重点:菱形的概念及性质
2、难点:菱形的性质及应用
教学策略分析启发、合作探究式
教学活动课前、课中反思
一、创设问题情景,导入新课
课件展示两幅图片(中国结、建筑物),引导学生欣赏、观察、研究、发现,引入课题——菱形。
2、菱形的概念:有一组邻边相等的平行四边形是菱形。
3、菱形与平行四边形的关系比较。(学生发言分析)
4、你还能举出有关菱形的生活实例吗?
二、观察分析,合作探究
你能说出平行四边形具有哪些性质吗?你认为菱形具有这些性质吗?(学生交流讨论回答)
师生共同整理:①、菱形是中心对称图形,对角线的交点是对称中心;
②、菱形的对边相等,对角相等,对角线互相平分.
菱形是有一组邻边相等的特殊的平行四边形,它有没有不同于平行四边形的特殊性质呢?
(1)、学生动手操作:画出并裁剪一个菱形,然后折叠,感受菱形的轴对称性。
(2)、学生合作讨论:菱形的四边之间有何关系?菱形的两条对角线还有什么特点?你能说出理由吗?
(3)、老师折纸,师生共同分析。
(4)、展示推理过程和结论。
③、菱形的四边都相等;
④、菱形是轴对称图形,两条对角线所在直线都是它的对称轴;
⑤、菱形的对角线互相垂直,且每一条对角线平分一组对角。
菱形的面积的求法:(课件展示)如图,菱形ABCD被它的两条对角线分成四个直角三角形,它们全等吗?为什么?如果知道了菱形ABCD的两条对角线的长度,你能算出菱形ABCD的面积吗?(让学生思考交流)然后师生共同分析并展示推演过程。并一起总结结论:菱形的面积等于它的对角线长的乘积的一半。
三、实际应用,巩固新知
展示书中例1:学生思考回答,然后展示解答过程。
四、归纳小结,教学反思:
1、你对菱形知多少?请你谈一谈。
从概念上来谈——
有一组邻边相等的平行四边形是菱形。
从性质上来谈——
①、菱形是中心对称图形,对角线的交点是对称中心;
②、菱形的对边相等,对角相等,对角线互相平分.
③、菱形的四边都相等;
④、菱形是轴对称图形,两条对角线所在直线都是它的对称轴;
⑤、菱形的对角线互相垂直,且每一条对角线平分一组对角。
从计算上来谈——
菱形的面积等于它的对角线长的乘积的一半。即:设菱形的两对角线长分别为a,b,则它的面积S=ab.
五、强化训练,综合拓展:
操作题:你能把有一个内角为72°的菱形ABCD分成4个等腰三角形。
经历探索菱形的性质的过程,在操作活动和观察与分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会推理论证的基本方法
课后反思
一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“湘教版八年级数学下(新)1.4角平分线的性质共3课时教案”,仅供参考,欢迎大家阅读。
课题角平分线的性质共3课时
第1课时课型新课
教学目标1.知识与技能:能够利用三角形全等,证明角平分线的性质,能对角平分线的性质进行简单推理,解决一些实际问题
2.过程与方法:经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力
3.情感态度与价值观:经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力
重点难点1、重点:角平分线的性质
2、难点::对角平分线的性质进行简单推理,解决一些实际问题
教学策略观察、分析、归纳
教学活动课前、课中反思
一.创设情境,引入新课。
1、引导学生回顾上节课的主要内容。
2、三角形中有哪些重要线段?你能作出这些线段吗?
3、多媒体展示如下问题,请学生思考。
如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
4、学生互相讨论,教师巡视班级,观察监督学生的活动情况,也可参与到学生的讨论中去。
5、师生共同分析讨论,探究问题的解答。
分析:要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全
等就可以了.
看看条件够不够.
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.
即射线AC就是∠DAB的平分线.
二、探究角平分线的作法和性质。
1、教师总结指出:由上面的探究可以得出作已知角的平分线的方法。
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
议一议:
1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一平角∠AOB,作它的平分线.
结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。
探索活动
1.在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。2、在折痕(即平分线)上任意找一点C,
过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。4、将纸打开,新的折痕与OB边交点为E。
角平分线的性质:角平分线上的点到角的两边的距离相等.
按以下步骤折纸
下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。
求证:OE=OD。
三、随堂练习
课本练习.
平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.
四.课时小结
本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.
五.课后作业经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力
文章来源:http://m.jab88.com/j/59559.html
更多