88教案网

八年级数学上册知识点:相似三角形

做好教案课件是老师上好课的前提,是时候写教案课件了。我们制定教案课件工作计划,才能更好地安排接下来的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“八年级数学上册知识点:相似三角形”,欢迎您参考,希望对您有所助益!

八年级数学上册知识点:相似三角形

一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
四、三角形相似的证题思路:
五、利用相似三角形证明线段成比例的一般步骤:
一“定”:先确定四条线段在哪两个可能相似的三角形中;
二“找”:再找出两个三角形相似所需的条件;
三“证”:根据分析,写出证明过程。
如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。
六、相似与全等:
全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:
1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。
2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。
常见考法
(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。
误区提醒
(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽视“夹角相等”这个重条件,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。

1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号∽表示,读作相似于。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的对应边相等的条件改为对应边
成比例就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

精选阅读

八年级数学上册《全等三角形》知识点人教版


八年级数学上册《全等三角形》知识点人教版

1.全等图形:能够完全重合的两个图形就是全等图形。
2.全等图形的性质:全等多边形的对应边、对应角分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:
全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:
(1)周长相等的两个三角形,不一定全等;
(2)面积相等的两个三角形,也不一定全等。
小练习
1.下列说法中正确的说法为()
①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,
A.①②③④B.①③④C.①②④D.②③④
2.一个正方形的侧面展开图有()个全等的正方形.
A.2个B.3个C.4个D.6个
3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()
①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.
A.1个B.2个C.3个D.4个

八年级数学上册《三角形全等的判定》知识点浙教版


八年级数学上册《三角形全等的判定》知识点浙教版

知识点
①三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”);
②两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”);
③两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”);
④两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”);
⑤斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).
课后练习
1.下列关系中的两个量成正比例的是()
A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长
C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高
2.下列函数中,y是x的正比例函数的是()
A.y=4x+1B.y=2x2C.y=-xD.y=3.下列说法中不成立的是()
A.在y=3x-1中y+1与x成正比例;B.在y=-中y与x成正比例
C.在y=2(x+1)中y与x+1成正比例;D.在y=x+3中y与x成正比例
4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()
A.m=-3B.m=1C.m=3D.m-3
5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1x2,则y1与y2的大小关系是()
A.y1y2B.y1
6.形如___________的函数是正比例函数.
7.若x、y是变量,且函数y=(k+1)xk2是正比例函数,则k=_________.
8.正比例函数y=kx(k为常数,k0)的图象依次经过第________象限,函数值随自变量的增大而_________.
9.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.
10.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数?
(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;
(2)地面气温是28℃,如果每升高1km,气温下降5℃,则气温x(℃)与高度y(km)的关系;
(3)圆面积y(cm2)与半径x(cm)的关系.

初三数学知识点归纳:相似三角形


每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“初三数学知识点归纳:相似三角形”,相信能对大家有所帮助。

初三数学知识点归纳:相似三角形

相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心
考核要求:知道重心的定义并初步应用.
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算

文章来源:http://m.jab88.com/j/51771.html

更多

最新更新

更多