88教案网

《因式分解-提公因式法》知识点归纳

每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《《因式分解-提公因式法》知识点归纳》,仅供参考,大家一起来看看吧。

《因式分解-提公因式法》知识点归纳

★★知识体系梳理
◆因式分解------把一个多项式变成几个整式的积的形式;(化和为积)
注意:
1、因式分解对象是多项式;
2、因式分解必须进行到每一个多项式因式不能再分解为止;
3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性;
◆分解因式的作用
分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。
◆分解因式的一些原则
(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。
(2)分解彻底的原则.即分解因式必须进行到每一个多项式因式都再不能分解为止。
(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。
◆因式分解的首要方法—提公因式法
1、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的
因式提出以分解因式的方法,叫做提公因式法。
3、使用提取公因式法应注意几点:
(1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。
(2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)
(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。
◆提公因式法分解因式的关键:
1、确定最高公因式;(各项系数的最大公约数与相同因式的最低次幂之积)
2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式)
★★典型例题、方法导航
◆考点一:因式分解的意义
【例1】判断下列变形哪些是因式分解?
(1)---------------------------()
(2)-------------------()
(3)--------------------()
(4)----------------------------------()
(5)-------------------------------()
【例2】根据整式乘法与因式分解的关系连线

【例3】已知关于的多项式分解因式为,求的值。

◎变式议练一
1、下列从左边到右边的变形,是因式分解的是()
A、B、
C、D、
2、辨析下列因式分解是否正确,若错误请改正。
(1)分解因式不彻底:
(2)提出公因式后漏项:
◆考点二:提公因式法
【例4】分解因式:
(1)(2)(3)

(4)(5)

◎变式议练二:
1、多项式与多项式的公因式是;
2、若多项式的一个因式是,那么另一个因式是()
、、、、
3、若是的因式,则p为()
A、-15B、-2C、8D、2
4、把下列各式分解因式:
(1)(2)

(3)(4)

◆考点三:提公因式法的应用
【例5】计算:(1)(2)

◎变式议练三:
1、已知,,则;
2、计算:;
3、已知,求的值。

◆考点四:能力拓展
【例6】已知,,求的值;

【例7】已知:,求代数式的值。

【例8】已知整数、、使等式对任意的均成立,求的值;(山东省竞赛题)

◎变式议练四:
1、多项式可以分解为两个整式的积,其中一个整式为,求另一个整式;

2、分解因式:

3、(IT杯赛)化简:.

◆◆◆快乐体验
将一个乒乓球的半径增加,其周长增加,将地球的半径增加,其周长增加,比较与的大小;

延伸阅读

提公因式法


§2.2.1提公因式法(一)
●教学目标
教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.
能力训练要求通过找公因式,培养学生的观察能力.
情感与价值观要求让学生养成独立思考的习惯,同时培养学生的合作交流意识
●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.[
●教学难点让学生识别多项式的公因式.
●教学方法独立思考——合作交流法.
●教学过程
Ⅰ.创设问题情境,引入新课
引例:一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积。
Ⅱ.新课讲解
1.公因式与提公因式法分解因式的概念.
若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.
ma+mb+mc=m(a+b+c)
从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
⑴公因式:多项式的各项中都含有的因式叫做它的公因式
⑵提公因式法:把多项式中的公因式提取出来的分解因式方法叫做提公因式法.
2.例题讲解
例1、将下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
3.议一议
提公因式法的步骤.①找各项系数的最大公约数,
②找各项中含有的相同的字母,相同字母的指数取次数最低的.
4.想一想
提公因式法分解因式与单项式乘以多项式有什么关系?(互逆变换)
Ⅲ.课堂练习
1、随堂练习P43~44
2、补充练习把3x2-6xy+x分解因式
Ⅳ.课时小结
1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的
(4)所有这些因式的乘积即为公因式.
4、特别注意:①不要漏项②公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题
Ⅴ.课后作业习题2.2
Ⅳ.活动与探究
利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.
●备课资料
一、把下列各式分解因式:
1、2a-4b;2、ax2+ax-4a;3、3ab2-3a2b;4、2x3+2x2-6x;
5、7x2+7x+14;6、-12a2b+24ab2;7、xy-x2y2-x3y3;8、27x3+9x2y.

八年级数学上册14.3因式分解14.3.1提公因式法因式分解学案新版新人教版


14.3.1提公因式法因式分解
【学习目标】
1、理解因式分解的概念,以及因式分解与整式乘法的关系.
2、理解公因式的概念
3、会用提公因式法因式分解。
【学习重点】会找公因式,会用提公因式法因式分解。
【学习难点】找公因式。
【学习过程】
一、提出问题,创设情境
1、请把下列各式写成整式的乘积的形式:
(1)x2+x=;(2)x2-1=;
(3)am+bm+cm=;(4)x2-2xy+y2=.
总结概念:把一个化成几个整式的的形式的变形叫做把这个多项式因式分解,也叫分解因式.
2、辩一辩:下列变形是否是因式分解?为什么?
(1)7x-7=7(x-1).
(2)3a2b-ab+b=b(3a2-a)
(3)x2-2x+3=(x-1)2+2
(4)2m(n+c)-3(n+c)=(n+c)(2m-3)
(5)x2y2+2xy-1=(xy+1)(xy-1)
(6)(x+1)(x-1)=x2-1
(7)x2-4=(x+2)(x-2)
(8)x+x2y=x2(+y)

3、问题:对于多项式:各项有何特点?你能把它分解因式吗?
=.
归纳:公因式:如多项式:的各项都有一个,我们把这个.
叫做这个多项式的。
提公因式法:如果一个多项式的各项含有,那么就可以把这个公因式,从而将多项式化成两个因式形式,这种分解因式的方法叫做.
4、请同学们指出下列各多项式中各项的公因式:
ax+ay+a4a2+10ah

4x2-8x6x2y+xy2

3mx-6mx212xyz-9x2y2

16a3b2-4a3b2-8ab4

通过以上学习探究活动,你能总结一下最大公因式的方法:
①一看系数:公因式的系数取各项系数的;
②二看字母:公因式字母取各项的字母,
③三看指数:公因式字母的指数取相同字母的最次幂.
二、范例学习:
例1将多项式分解因式8a3b2+12ab2c

即时训练:分解因式
(1)3x3-6xy+3x(2)-4a3+16a2-18a
例2、把2a(b+c)-3(b+c)分解因式.

即时训练:分解因式

三、巩固练习:
1、把下列各式分解因式:
(1)(2)(3)

2、先分解因式,再求值:

四、课堂小结:
1.利用提公因式法因式分解,关键是找准.在找最大公因式时应注意:
.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
五、课后反思:,
(实际用课时)

2.2提公因式法(二)教案


§2.2.2提公因式法(二)
●教学目标
教学知识点进一步让学生掌握用提公因式法分解因式的方法.
能力训练要求进一步培养学生的观察能力和类比推理能力.
情感与价值观要求
通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.
●教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.
●教学难点准确找出公因式,并能正确进行分解因式.
●教学方法类比学习法
●教学过程
Ⅰ.创设问题情境,引入新课
深入探索用提公因式法。
Ⅱ.新课讲解
一、例题讲解
例2、把a(x-3)+2b(x-3)分解因式.
例3、把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
二、做一做
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立
(1)2-a=__________(a-2);(2)y-x=__________(x-y);
(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;
(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).
Ⅲ.课堂练习
1、随堂练习P45
2、补充练习把下列各式分解因式
1、5(x-y)3+10(y-x)22、m(a-b)-n(b-a)
3、m(m-n)+n(n-m)4、m(m-n)(p-q)-n(n-m)(p-q)
5.(b-a)2+a(a-b)+b(b-a)
Ⅳ.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.
Ⅴ.课后作业习题2.3
Ⅵ.活动与探究
把(a+b-c)(a-b+c)+(b-a+c)(b-a-c)分解因式.
●备课资料
把下列各式分解因式:
1、a(x-y)-b(y-x)+c(x-y);2、x2y-3xy2+y3;
3、2(x-y)2+3(y-x);4、5(m-n)2+2(n-m)3.

文章来源:http://m.jab88.com/j/56573.html

更多

最新更新

更多