§2.2.1提公因式法(一)
●教学目标
教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.
能力训练要求通过找公因式,培养学生的观察能力.
情感与价值观要求让学生养成独立思考的习惯,同时培养学生的合作交流意识
●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.[
●教学难点让学生识别多项式的公因式.
●教学方法独立思考——合作交流法.
●教学过程
Ⅰ.创设问题情境,引入新课
引例:一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积。
Ⅱ.新课讲解
1.公因式与提公因式法分解因式的概念.
若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.
ma+mb+mc=m(a+b+c)
从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
⑴公因式:多项式的各项中都含有的因式叫做它的公因式
⑵提公因式法:把多项式中的公因式提取出来的分解因式方法叫做提公因式法.
2.例题讲解
例1、将下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
3.议一议
提公因式法的步骤.①找各项系数的最大公约数,
②找各项中含有的相同的字母,相同字母的指数取次数最低的.
4.想一想
提公因式法分解因式与单项式乘以多项式有什么关系?(互逆变换)
Ⅲ.课堂练习
1、随堂练习P43~44
2、补充练习把3x2-6xy+x分解因式
Ⅳ.课时小结
1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的
(4)所有这些因式的乘积即为公因式.
4、特别注意:①不要漏项②公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题
Ⅴ.课后作业习题2.2
Ⅳ.活动与探究
利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.
●备课资料
一、把下列各式分解因式:
1、2a-4b;2、ax2+ax-4a;3、3ab2-3a2b;4、2x3+2x2-6x;
5、7x2+7x+14;6、-12a2b+24ab2;7、xy-x2y2-x3y3;8、27x3+9x2y.
14.3.1提公因式法因式分解
【学习目标】
1、理解因式分解的概念,以及因式分解与整式乘法的关系.
2、理解公因式的概念
3、会用提公因式法因式分解。
【学习重点】会找公因式,会用提公因式法因式分解。
【学习难点】找公因式。
【学习过程】
一、提出问题,创设情境
1、请把下列各式写成整式的乘积的形式:
(1)x2+x=;(2)x2-1=;
(3)am+bm+cm=;(4)x2-2xy+y2=.
总结概念:把一个化成几个整式的的形式的变形叫做把这个多项式因式分解,也叫分解因式.
2、辩一辩:下列变形是否是因式分解?为什么?
(1)7x-7=7(x-1).
(2)3a2b-ab+b=b(3a2-a)
(3)x2-2x+3=(x-1)2+2
(4)2m(n+c)-3(n+c)=(n+c)(2m-3)
(5)x2y2+2xy-1=(xy+1)(xy-1)
(6)(x+1)(x-1)=x2-1
(7)x2-4=(x+2)(x-2)
(8)x+x2y=x2(+y)
3、问题:对于多项式:各项有何特点?你能把它分解因式吗?
=.
归纳:公因式:如多项式:的各项都有一个,我们把这个.
叫做这个多项式的。
提公因式法:如果一个多项式的各项含有,那么就可以把这个公因式,从而将多项式化成两个因式形式,这种分解因式的方法叫做.
4、请同学们指出下列各多项式中各项的公因式:
ax+ay+a4a2+10ah
4x2-8x6x2y+xy2
3mx-6mx212xyz-9x2y2
16a3b2-4a3b2-8ab4
通过以上学习探究活动,你能总结一下最大公因式的方法:
①一看系数:公因式的系数取各项系数的;
②二看字母:公因式字母取各项的字母,
③三看指数:公因式字母的指数取相同字母的最次幂.
二、范例学习:
例1将多项式分解因式8a3b2+12ab2c
即时训练:分解因式
(1)3x3-6xy+3x(2)-4a3+16a2-18a
例2、把2a(b+c)-3(b+c)分解因式.
即时训练:分解因式
三、巩固练习:
1、把下列各式分解因式:
(1)(2)(3)
2、先分解因式,再求值:
四、课堂小结:
1.利用提公因式法因式分解,关键是找准.在找最大公因式时应注意:
.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
五、课后反思:,
(实际用课时)
文章来源:http://m.jab88.com/j/56573.html
更多