88教案网

高考数学抛物线复习教案

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在教学期间跟着互动起来,帮助教师能够井然有序的进行教学。关于好的教案要怎么样去写呢?小编为此仔细地整理了以下内容《高考数学抛物线复习教案》,欢迎您阅读和收藏,并分享给身边的朋友!

1抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
2抛物线的图形和性质:
①顶点是焦点向准线所作垂线段中点。
②焦准距:
③通径:过焦点垂直于轴的弦长为。
④顶点平分焦点到准线的垂线段:。
⑤焦半径为半径的圆:以P为圆心、FP为半径的圆必与准线相切。所有这样的圆过定点F、准线是公切线。
⑥焦半径为直径的圆:以焦半径FP为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ为直径的圆必与准线相切。所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:
4抛物线的图像和性质:
①焦点坐标是:,
②准线方程是:。
③焦半径公式:若点是抛物线上一点,则该点到抛物线的焦点的距离(称为焦半径)是:,
④焦点弦长公式:过焦点弦长
⑤抛物线上的动点可设为P或或P
5一般情况归纳:
方程图象焦点准线定义特征
y2=kxk0时开口向右(k/4,0)x=─k/4到焦点(k/4,0)的距离等于到准线x=─k/4的距离
k0时开口向左
x2=kyk0时开口向上(0,k/4)y=─k/4到焦点(0,k/4)的距离等于到准线y=─k/4的距离
k0时开口向下
抛物线的定义:
例1:点M与点F(-4,0)的距离比它到直线l:x-6=0的距离4.2,求点M的轨迹方程.
分析:点M到点F的距离与到直线x=4的距离恰好相等,符合抛物线定义.
答案:y2=-16x
例2:斜率为1的直线l经过抛物线y2=4x的焦点,与抛物线相交于点A、B,求线段A、B的长.
分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB转化为求A、B两点到准线距离的和.
解:如图8-3-1,y2=4x的焦点为F(1,0),则l的方程为y=x-1.
由消去y得x2-6x+1=0.
设A(x1,y1),B(x2,y2)则x1+x2=6.
又A、B两点到准线的距离为,,则
点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。
例3:(1)已知抛物线的标准方程是y2=10x,求它的焦点坐标和准线方程;
(2)已知抛物线的焦点是F(0,3)求它的标准方程;
(3)已知抛物线方程为y=-mx2(m0)求它的焦点坐标和准线方程;
(4)求经过P(-4,-2)点的抛物线的标准方程;
分析:这是为掌握抛物线四类标准方程而设计的基础题,解题时首先分清属哪类标准型,再录求P值(注意p0).特别是(3)题,要先化为标准形式:,则.(4)题满足条件的抛物线有向左和向下开口的两条,因此有两解.
答案:(1),.(2)x2=12y(3),;(4)y2=-x或x2=-8y.
例4求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上
分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p;从实际分析,一般需确定p和确定开口方向两个条件,否则,应展开相应的讨论
解:(1)设所求的抛物线方程为y2=-2px或x2=2py(p>0),
∵过点(-3,2),
∴4=-2p(-3)或9=2p2
∴p=或p=
∴所求的抛物线方程为y2=-x或x2=y,前者的准线方程是x=,后者的准线方程是y=-
(2)令x=0得y=-2,令y=0得x=4,
∴抛物线的焦点为(4,0)或(0,-2)
当焦点为(4,0)时,=4,
∴p=8,此时抛物线方程y2=16x;
焦点为(0,-2)时,=2,
∴p=4,此时抛物线方程为x2=-8y
∴所求的抛物线的方程为y2=16x或x2=-8y,
对应的准线方程分别是x=-4,y=2

常用结论
①过抛物线y2=2px的焦点F的弦AB长的最小值为2p
②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2
③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2p,0)

例5:过抛物线y2=2px(p0)的顶点O作弦OA⊥OB,与抛物线分别交于A(x1,y1),B(x2,y2)两点,求证:y1y2=-4p2.
分析:由OA⊥OB,得到OA、OB斜率之积等于-1,从而得到x1、x2,y1、y2之间的关系.又A、B是抛物线上的点,故(x1,y1)、(x2,y2)满足抛物线方程.从这几个关系式可以得到y1、y2的值.
证:由OA⊥OB,得,即y1y2=-x1x2,又,,所以:,即.而y1y2≠0.所以y1y2=-4p2.
弦的问题
例1A,B是抛物线y2=2px(p0)上的两点,满足OAOB(O为坐标原点)求证:(1)A,B两点的横坐标之积,纵坐标之积为定值;
(2)直线AB经过一个定点
(3)作OMAB于M,求点M的轨迹方程
解:(1)设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,
∴y12y22=4p2x1x2,
∵OAOB,∴x1x2+y1y2=0,
由此即可解得:x1x2=4p2,y1y2=─4p2(定值)
(2)直线AB的斜率k===,
∴直线AB的方程为y─y1=(x─),
即y(y1+y2)─y1y2=2px,由(1)可得y=(x─2p),
直线AB过定点C(2p,0)
(3)解法1:设M(x,y),由(2)知y=(x─2p)(i),
又ABOM,故两直线的斜率之积为─1,即=─1(ii)
由(i),(ii)得x2─2px+y2=0(x0)
解法2:由OMAB知点M的轨迹是以原点和点(2p,0)为直径的圆(除去原点)立即可求出
例2定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求此时点M的坐标
解:如图,设A(x1,y1),B(x2,y2),M(x,y),则x=,y=,
又设点A,B,M在准线:x=─1/4上的射影分别为A/,B/,M/,MM/与y轴的交点为N,
则|AF|=|AA/|=x1+,|BF|=|BB/|=x2+,
∴x=(x1+x2)=(|AF|+|BF|─)(|AB|─)=
等号在直线AB过焦点时成立,此时直线AB的方程为y=k(x─)
由得16k2x2─8(k2+2)x+k2=0
依题意|AB|=|x1─x2|=×==3,
∴k2=1/2,此时x=(x1+x2)==
∴y=±即M(,),N(,─)
例3设一动直线过定点A(2,0)且与抛物线相交于B、C两点,点B、C在轴上的射影分别为,P是线段BC上的点,且适合,求的重心Q的轨迹方程,并说明该轨迹是什么图形
解析:设,
,
由得

又代入①式得②
由得代入②式得:
由得或,又由①式知关于是减函数且
,且
所以Q点轨迹为一线段(抠去一点):
(且)
例4已知抛物线,焦点为F,一直线与抛物线交于A、B两点,且,且AB的垂直平分线恒过定点S(6,0)
①求抛物线方程;②求面积的最大值
解:①设,AB中点
由得
又得
所以依题意,
抛物线方程为
②由及,
令得
又由和得:
例5定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求此时点M的坐标
解:如图,设A(x1,y1),B(x2,y2),M(x,y),则x=,y=,
又设点A,B,M在准线:x=─1/4上的射影分别为A/,B/,M/,MM/与y轴的交点为N,
则|AF|=|AA/|=x1+,|BF|=|BB/|=x2+,
∴x=(x1+x2)=(|AF|+|BF|─)(|AB|─)=
等号在直线AB过焦点时成立,此时直线AB的方程为y=k(x─)
由得16k2x2─8(k2+2)x+k2=0
依题意|AB|=|x1─x2|=×==3,
∴k2=1/2,此时x=(x1+x2)==
∴y=±即M(,),N(,─)

综合类(几何)
例1过抛物线焦点的一条直线与它交于两点P、Q,通过点P和抛物线顶点的直线交准线于点M,如何证明直线MQ平行于抛物线的对称轴?
解:思路一:求出M、Q的纵坐标并进行比较,如果相等,则MQ//x轴,为此,将方程联立,解出
直线OP的方程为即
令,得M点纵坐标得证.
由此可见,按这一思路去证,运算较为繁琐.
思路二:利用命题“如果过抛物线的焦点的一条直线和这条抛物线相交,两上交点的纵坐标为、,那么”来证.
设、、,并从及中消去x,得到,则有结论,即.
又直线OP的方程为,,得.
因为在抛物线上,所以.
从而.
这一证法运算较小.
思路三:直线MQ的方程为的充要条件是.
将直线MO的方程和直线QF的方程联立,它的解(x,y)就是点P的坐标,消去的充要条件是点P在抛物线上,得证.这一证法巧用了充要条件来进行逆向思维,运算量也较小.
说明:本题中过抛物线焦点的直线与x轴垂直时(即斜率不存在),容易证明成立.
例2已知过抛物线的焦点且斜率为1的直线交抛物线于A、B两点,点R是含抛物线顶点O的弧AB上一点,求△RAB的最大面积.
分析:求RAB的最大面积,因过焦点且斜率为1的弦长为定值,故可以为三角形的底,只要确定高的最大值即可.
解:设AB所在的直线方程为.
将其代入抛物线方程,消去x得
当过R的直线l平行于AB且与抛物线相切时,△RAB的面积有最大值.
设直线l方程为.代入抛物线方程得
由得,这时.它到AB的距离为
∴△RAB的最大面积为.
例3直线过点,与抛物线交于、两点,P是线段的中点,直线过P和抛物线的焦点F,设直线的斜率为k.
(1)将直线的斜率与直线的斜率之比表示为k的函数;
(2)求出的定义域及单调区间.
分析:过点P及F,利用两点的斜率公式,可将的斜率用k表示出来,从而写出,由函数的特点求得其定义域及单调区间.
解:(1)设的方程为:,将它代入方程,得
设,则
将代入得:,即P点坐标为.
由,知焦点,∴直线的斜率
∴函数.
(2)∵与抛物线有两上交点,∴且
解得或
∴函数的定义域为
当时,为增函数.
例4如图所示:直线l过抛物线的焦点,并且与这抛物线相交于A、B两点,求证:对于这抛物线的任何给定的一条弦CD,直线l不是CD的垂直平分线.
分析:本题所要证的命题结论是否定形式,一方面可根据垂直且平分列方程得矛盾结论;别一方面也可以根据l上任一点到C、D距离相等来得矛盾结论.
证法一:假设直线l是抛物线的弦CD的垂直平方线,因为直线l与抛物线交于A、B两点,所以直线l的斜率存在,且不为零;直线CD的斜率存在,且不为0.
设C、D的坐标分别为与.则
∴l的方程为
∵直线l平分弦CD
∴CD的中点在直线l上,
即,化简得:
由知得到矛盾,所以直线l不可能是抛物线的弦CD的垂直平分线.
证法二:假设直线l是弦CD的垂直平分线
∵焦点F在直线l上,∴
由抛物线定义,到抛物线的准线的距离相等.
∵,
∴CD的垂直平分线l:与直线l和抛物线有两上交点矛盾,下略.
例5设过抛物线的顶点O的两弦OA、OB互相垂直,求抛物线顶点O在AB上射影N的轨迹方程.
分析:求与抛物线有关的轨迹方程,可先把N看成定点;待求得的关系后再用动点坐标来表示,也可结合几何知识,通过巧妙替换,简化运算.
解法一:设
则:,
,即
,①
把N点看作定点,则AB所在的直线方程为:显然
代入化简整理得:
,②
由①、②得:,化简得
用x、y分别表示得:
解法二:点N在以OA、OB为直径的两圆的交点(非原点)的轨迹上,设,则以OA为直径的圆方程为:

设,OA⊥OB,则
在求以OB为直径的圆方程时以代,可得

由①+②得:
例6如图所示,直线和相交于点M,⊥,点,以A、B为端点的曲线段C上的任一点到的距离与到点N的距离相等,若△AMN为锐角三角形,,,且,建立适当的坐标系,求曲线段C的方程.
分析:因为曲线段C上的任一点是以点N为焦点,以为准线的抛物线的一段,所以本题关键是建立适当坐标系,确定C所满足的抛物线方程.
解:以为x轴,MN的中点为坐标原点O,建立直角坐标系.
由题意,曲线段C是N为焦点,以为准线的抛物线的一段,其中A、B分别为曲线段的两端点.
∴设曲线段C满足的抛物线方程为:其中、为A、B的横坐标
令则,
∴由两点间的距离公式,得方程组:
解得或
∵△AMN为锐角三角形,∴,则,
又B在曲线段C上,
则曲线段C的方程为
例7如图所示,设抛物线与圆在x轴上方的交点为A、B,与圆在x由上方的交点为C、D,P为AB中点,Q为CD的中点.(1)求.(2)求△ABQ面积的最大值.
分析:由于P、Q均为弦AB、CD的中点,故可用韦达定理表示出P、Q两点坐标,由两点距离公式即可求出.
解:(1)设
由得:,
由得,
同类似,
则,
(2)
,∴当时,取最大值.
例8已知直线过原点,抛物线的顶点在原点,焦点在轴的正半轴上,且点和点关于直线的对称点都在上,求直线和抛物线的方程.
分析:设出直线和抛物线的方程,由点、关于直线对称,求出对称点的坐标,分别代入抛物线方程.或设,利用对称的几何性质和三角函数知识求解.
解法一:设抛物线的方程为,直线的方程为,
则有点,点关于直线的对称点为、,
则有解得
解得
如图,、在抛物线上

两式相除,消去,整理,得,故,
由,,得.把代入,得.
∴直线的方程为,抛物线的方程为.
解法二:设点、关于的对称点为、,
又设,依题意,有,.
故,.
由,知.
∴,.
又,,故为第一象限的角.
∴、.
将、的坐标代入抛物线方程,得
∴,即从而,,
∴,得抛物线的方程为.
又直线平分,得的倾斜角为.
∴.
∴直线的方程为.
说明:
(1)本题属于点关于直线的对称问题.解法一是解对称点问题的基本方法,它的思路明确,但运算量大,若不仔细、沉着,难于解得正确结果.解法二是利用对称图形的性质来解,它的技巧性较强,一时难于想到.
(2)本题是用待定系数法求直线的方程和抛物线方程.在已知曲线的类型求曲线方程时,这种方法是最常规方法,需要重点掌握.
例9如图,正方形的边在直线上,、两点在抛物线上,求正方形的面积.
分析:本题考查抛物线的概念及其位置关系,方程和方程组的解法和数形结合的思想方法,以及分析问题、解决问题的能力.
解:∵直线,,∴设的方程为,且、.
由方程组,消去,得,于是
,,∴(其中)
∴.
由已知,为正方形,,
∴可视为平行直线与间的距离,则有
,于是得.
两边平方后,整理得,,∴或.
当时,正方形的面积.
当时,正方形的面积.
∴正方形的面积为18或50.
说明:运用方程(组)的思想和方法求某些几何量的值是解析几何中最基本的、贯穿始终的方法,本题应充分考虑正方形这一条件.
例10设有一颗彗星围绕地球沿一抛物线轨道运行,地球恰好位于抛物线轨道的焦点处,当此彗星离地球为时,经过地球与彗星的直线与抛物线的轴的夹角为,求这彗星与地球的最短距离.
分析:利用抛物线有关性质求解.
解:如图,设彗星轨道方程为,,焦点为,
彗星位于点处.直线的方程为.
解方程组得,
故.

故,得.
由于顶点为抛物线上到焦点距离最近的点,所以顶点是抛物线上到焦点距离最近的点.焦点到抛物线顶点的距离为,所以彗星与地球的最短距离为或,(点在点的左边与右边时,所求距离取不同的值).
说明:
(1)此题结论有两个,不要漏解;
(2)本题用到抛物线一个重要结论:顶点为抛物线上的点到焦点距离最近的点,其证明如下:设为抛物线上一点,焦点为,准线方程为,依抛物线定义,有,当时,最小,故抛物线上到焦点距离最近的点是抛物线的顶点.
例11如图,抛物线顶点在原点,圆的圆心是抛物线的焦点,直线过抛物线的焦点,且斜率为2,直线交抛物线与圆依次为、、、四点,求的值.
分析:本题考查抛物线的定义,圆的概念和性质,以及分析问题与解决问题的能力,本题的关键是把转化为直线被圆锥曲线所截得的弦长问题.
解:由圆的方程,即可知,圆心为,半径为2,又由抛物线焦点为已知圆的圆心,得到抛物线焦点为,设抛物线方程为,
∵为已知圆的直径,∴,则.
设、,∵,而、在抛物线上,
由已知可知,直线方程为,于是,由方程组
消去,得,∴.
∴,因此,.
说明:本题如果分别求与则很麻烦,因此把转化成是关键所在,在求时,又巧妙地运用了抛物线的定义,从而避免了一些繁杂的运算.
11.已知抛物线y2=2px(p0),过焦点F的弦的倾斜角为θ(θ≠0),且与抛物线相交于A、B两点.
(1)求证:|AB|=;
(2)求|AB|的最小值.
(1)证明:如右图,焦点F的坐标为F(,0).
设过焦点、倾斜角为θ的直线方程为y=tanθ(x-),与抛物线方程联立,消去y并整理,得
tan2θx2-(2p+ptan2θ)x+=0.
此方程的两根应为交点A、B的横坐标,根据韦达定理,有x1+x2=.
设A、B到抛物线的准线x=-的距离分别为|AQ|和|BN|,根据抛物线的定义,有|AB|=|AF|+|FB|=|AQ|+|BN|=x1+x2+p=.
(2)解析:因|AB|=的定义域是0θπ,又sin2θ≤1,
所以,当θ=时,|AB|有最小值2p.
12.已知抛物线y2=2px(p0)的一条焦点弦AB被焦点F分成m、n两部分,求证:为定值,本题若推广到椭圆、双曲线,你能得到什么结论?
解析:(1)当AB⊥x轴时,m=n=p,
∴=.
(2)当AB不垂直于x轴时,设AB:y=k(x-),
A(x1,y1),B(x2,y2),|AF|=m,|BF|=n,
∴m=+x1,n=+x2.
将AB方程代入抛物线方程,得
k2x2-(k2p+2p)x+=0,

∴=
=.
本题若推广到椭圆,则有=(e是椭圆的离心率);若推广到双曲线,则要求弦AB与双曲线交于同一支,此时,同样有=(e为双曲线的离心率).
13.如右图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且?|MA|=|MB|.
(1)若M为定点,证明:直线EF的斜率为定值;
(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.
(1)证明:设M(y02,y0),直线ME的斜率为?k(k0),则直线MF的斜率为-k,
直线ME的方程为y-y0=k(x-y02).
由得
ky2-y+y0(1-ky0)=0.
解得y0yE=,
∴yE=,∴xE=.
同理可得yF=,∴xF=.
∴kEF=(定值).
(2)解析:当∠EMF=90°时,∠MAB=45°,所以k=1,由(1)得E((1-y0)2,(1-y0))F((1+y0)2,-(1+y0)).
设重心G(x,y),则有
消去参数y0,得y2=(x0).
14.在平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足=?t+(1-t)(t∈R),点C的轨迹与抛物线y2=4x交于A、B两点.
(1)求证:⊥;
(2)在x轴上是否存在一点P(m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.
(1)证明:由=t+(1-t)(t∈R)知点C的轨迹是M、N两点所在的直线,故点C的轨迹方程是:y+3=(x-1),即y=x-4.
由(x-4)2=4xx2-12x+16=0.
∴x1x2=16,x1+x2=12,
∴y1y2=(x1-4)(x2-4)=x1x2-4(x1+x2)+16=-16.
∴x1x2+y1y2=0.故⊥.
(2)解析:存在点P(4,0),使得过点P任作抛物线的一条弦,以该弦为直径的圆都过原点.
由题意知:弦所在的直线的斜率不为零,
故设弦所在的直线方程为:x=ky+4,代入y2=x,得y2-4ky-16=0,
∴y1+y2=4k,y1y2=-16.
kOAkOB==-1.
∴OA⊥OB,故以AB为直径的圆都过原点.
设弦AB的中点为M(x,y),
则x=(x1+x2),y=(y1+y2).
x1+x2=ky1+4+ky2+4=k(y1+y2)+8=k(4k)+8=4k2+8.
∴弦AB的中点M的轨迹方程为:消去k,得y2=2x-8.

相关推荐

高考数学(理科)一轮复习抛物线学案附答案


学案53抛物线

导学目标:1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.
自主梳理
1.抛物线的概念
平面内与一个定点F和一条定直线l(Fl)距离______的点的轨迹叫做抛物线.点F叫做抛物线的__________,直线l叫做抛物线的________.
2.抛物线的标准方程与几何性质
标准方程y2=2px
(p0)y2=-2px
(p0)x2=2py
(p0)x2=-2py
(p0)
p的几何意义:焦点F到准线l的距离
图形

顶点O(0,0)
对称轴y=0x=0
焦点F(p2,0)
F(-p2,0)
F(0,p2)
F(0,-p2)

离心率e=1
准线方程x=-p2
x=p2
y=-p2
y=p2

范围x≥0,
y∈Rx≤0,
y∈Ry≥0,
x∈Ry≤0,
x∈R
开口方向向右向左向上向下

自我检测
1.(2010四川)抛物线y2=8x的焦点到准线的距离是()
A.1B.2C.4D.8
2.若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则p的值为()
A.-2B.2C.-4D.4
3.(2011陕西)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x
4.已知抛物线y2=2px(p0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1||FP3|
5.(2011佛山模拟)已知抛物线方程为y2=2px(p0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A、B两点,过点A、点B分别作AM、BN垂直于抛物线的准线,分别交准线于M、N两点,那么∠MFN必是()
A.锐角B.直角
C.钝角D.以上皆有可能
探究点一抛物线的定义及应用
例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标.

变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.14,-1B.14,1
C.(1,2)D.(1,-2)
探究点二求抛物线的标准方程
例2(2011芜湖调研)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.

变式迁移2根据下列条件求抛物线的标准方程:
(1)抛物线的焦点F是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4).

探究点三抛物线的几何性质
例3过抛物线y2=2px的焦点F的直线和抛物线相交于A,B两点,如图所示.
(1)若A,B的纵坐标分别为y1,y2,求证:y1y2=-p2;
(2)若直线AO与抛物线的准线相交于点C,求证:BC∥x轴.

变式迁移3已知AB是抛物线y2=2px(p0)的焦点弦,F为抛物线的焦点,A(x1,y1),B(x2,y2).求证:
(1)x1x2=p24;
(2)1|AF|+1|BF|为定值.

分类讨论思想的应用
例(12分)过抛物线y2=2px(p0)焦点F的直线交抛物线于A、B两点,过B点作其准线的垂线,垂足为D,设O为坐标原点,问:是否存在实数λ,使AO→=λOD→?
多角度审题这是一道探索存在性问题,应先假设存在,设出A、B两点坐标,从而得到D点坐标,再设出直线AB的方程,利用方程组和向量条件求出λ.
【答题模板】
解假设存在实数λ,使AO→=λOD→.
抛物线方程为y2=2px(p0),
则Fp2,0,准线l:x=-p2,
(1)当直线AB的斜率不存在,即AB⊥x轴时,
交点A、B坐标不妨设为:Ap2,p,Bp2,-p.
∵BD⊥l,∴D-p2,-p,
∴AO→=-p2,-p,OD→=-p2,-p,∴存在λ=1使AO→=λOD→.[4分]
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx-p2(k≠0),
设A(x1,y1),B(x2,y2),则D-p2,y2,x1=y212p,x2=y222p,
由y=kx-p2y2=2px得ky2-2py-kp2=0,∴y1y2=-p2,∴y2=-p2y1,[8分]
AO→=(-x1,-y1)=-y212p,-y1,OD→=-p2,y2=-p2,-p2y1,
假设存在实数λ,使AO→=λOD→,则-y212p=-p2λ-y1=-p2y1λ,解得λ=y21p2,∴存在实数λ=y21p2,使AO→=λOD→.
综上所述,存在实数λ,使AO→=λOD→.[12分]
【突破思维障碍】
由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A、D两点坐标关系,求出AO→和OD→的坐标,判断λ是否存在.
【易错点剖析】
解答本题易漏掉讨论直线AB的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.
1.关于抛物线的定义
要注意点F不在定直线l上,否则轨迹不是抛物线,而是一条直线.
2.关于抛物线的标准方程
抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于:
(1)p的几何意义:参数p是焦点到准线的距离,所以p恒为正数.
(2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向.
3.关于抛物线的几何性质
抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:
已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011大纲全国)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于()
A.45B.35
C.-35D.-45
2.(2011湖北)将两个顶点在抛物线y2=2px(p0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()
A.n=0B.n=1
C.n=2D.n≥3
3.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()
A.相离B.相交C.相切D.不确定
4.(2011泉州月考)已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()
A.-14,1B.(-2,22)
C.-14,-1D.(-2,-22)
5.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,若OA→AF→=-4,则点A的坐标为()
A.(2,±2)B.(1,±2)
C.(1,2)D.(2,2)
二、填空题(每小题4分,共12分)
6.(2011重庆)设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________.
7.(2011济宁期末)已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|=________.
8.(2010浙江)设抛物线y2=2px(p0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.
三、解答题(共38分)
9.(12分)已知顶点在原点,焦点在x轴上的抛物线截直线y=2x+1所得的弦长为15,求抛物线方程.

10.(12分)(2011韶关模拟)已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

11.(14分)(2011济南模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹C于两点P、Q,交直线l1于点R,求RP→RQ→的最小值.

学案53抛物线
自主梳理
1.相等焦点准线
自我检测
1.C
2.B[因为抛物线的准线方程为x=-2,所以p2=2,所以p=4,所以抛物线的方程是y2=8x.所以选B.]
3.B4.C5.B
课堂活动区
例1解题导引重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.

将x=3代入抛物线方程
y2=2x,得y=±6.
∵62,∴A在抛物线内部.
设抛物线上点P到准线l:
x=-12的距离为d,由定义知
|PA|+|PF|=|PA|+d,
当PA⊥l时,|PA|+d最小,最小值为72,
即|PA|+|PF|的最小值为72,
此时P点纵坐标为2,代入y2=2x,得x=2,
∴点P坐标为(2,2).
变式迁移1A[
点P到抛物线焦点的距离等于点P到抛物线准线的距离,如图,|PF|+|PQ|=|PS|+|PQ|,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,点P的坐标为14,-1.]
例2解题导引(1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;
(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;
(3)解决抛物线相关问题时,要善于用定义解题,即把|PF|转化为点P到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.
解方法一设抛物线方程为
x2=-2py(p0),
则焦点为F0,-p2,准线方程为y=p2.
∵M(m,-3)在抛物线上,且|MF|=5,
∴m2=6p,m2+-3+p22=5,解得p=4,m=±26.
∴抛物线方程为x2=-8y,m=±26,
准线方程为y=2.
方法二如图所示,
设抛物线方程为x2=-2py(p0),
则焦点F0,-p2,
准线l:y=p2,作MN⊥l,垂足为N.
则|MN|=|MF|=5,而|MN|=3+p2,
∴3+p2=5,∴p=4.∴抛物线方程为x2=-8y,
准线方程为y=2.由m2=(-8)×(-3),得m=±26.
变式迁移2解(1)双曲线方程化为x29-y216=1,
左顶点为(-3,0),由题意设抛物线方程为y2=-2px(p0)且-p2=-3,∴p=6.∴方程为y2=-12x.
(2)由于P(2,-4)在第四象限且对称轴为坐标轴,可设方程为y2=mx(m0)或x2=ny(n0),代入P点坐标求得m=8,n=-1,
∴所求抛物线方程为y2=8x或x2=-y.
例3解题导引解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB为焦点弦,以y2=2px(p0)为例):
①y1y2=-p2,x1x2=p24;
②|AB|=x1+x2+p.
证明(1)方法一由抛物线的方程可得焦点坐标为Fp2,0.设过焦点F的直线交抛物线于A,B两点的坐标分别为(x1,y1)、(x2,y2).
①当斜率存在时,过焦点的直线方程可设为
y=kx-p2,由y=kx-p2,y2=2px,
消去x,得ky2-2py-kp2=0.(*)
当k=0时,方程(*)只有一解,∴k≠0,
由韦达定理,得y1y2=-p2;
②当斜率不存在时,得两交点坐标为
p2,p,p2,-p,∴y1y2=-p2.
综合两种情况,总有y1y2=-p2.
方法二由抛物线方程可得焦点Fp2,0,设直线AB的方程为x=ky+p2,并设A(x1,y1),B(x2,y2),
则A、B坐标满足x=ky+p2,y2=2px,
消去x,可得y2=2pky+p2,
整理,得y2-2pky-p2=0,∴y1y2=-p2.
(2)直线AC的方程为y=y1x1x,
∴点C坐标为-p2,-py12x1,yC=-py12x1=-p2y12px1.
∵点A(x1,y1)在抛物线上,∴y21=2px1.
又由(1)知,y1y2=-p2,∴yC=y1y2y1y21=y2,∴BC∥x轴.
变式迁移3证明(1)∵y2=2px(p0)的焦点Fp2,0,设直线方程为y=kx-p2(k≠0),
由y=kx-p2y2=2px,消去x,得ky2-2py-kp2=0.
∴y1y2=-p2,x1x2=y1y224p2=p24,
当k不存在时,直线方程为x=p2,这时x1x2=p24.
因此,x1x2=p24恒成立.
(2)1|AF|+1|BF|=1x1+p2+1x2+p2
=x1+x2+px1x2+p2x1+x2+p24.
又∵x1x2=p24,代入上式得1|AF|+1|BF|=2p=常数,
所以1|AF|+1|BF|为定值.
课后练习区
1.D[方法一由y=2x-4,y2=4x,得x=1,y=-2或x=4,y=4.
令B(1,-2),A(4,4),又F(1,0),
∴由两点间距离公式得|BF|=2,|AF|=5,|AB|=35.
∴cos∠AFB=|BF|2+|AF|2-|AB|22|BF||AF|=4+25-452×2×5
=-45.
方法二由方法一得A(4,4),B(1,-2),F(1,0),
∴FA→=(3,4),FB→=(0,-2),
∴|FA→|=32+42=5,|FB→|=2.
∴cos∠AFB=FA→FB→|FA→||FB→|=3×0+4×-25×2=-45.]
2.C[
如图所示,A,B两点关于x轴对称,F点坐标为(p2,0),设A(m,2pm)(m0),则由抛物线定义,
|AF|=|AA1|,
即m+p2=|AF|.
又|AF|=|AB|=22pm,
∴m+p2=22pm,整理,得m2-7pm+p24=0,①
∴Δ=(-7p)2-4×p24=48p20,
∴方程①有两相异实根,记为m1,m2,且m1+m2=7p0,m1m2=p240,
∴m10,m20,∴n=2.]
3.C
4.A[过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,
∴|PA|+|PF|=|PA|+|PK|.
∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=-4x,得x=-14,即当P点的坐标为-14,1时,|PA|+|PF|最小.]
5.B
6.6-1
解析如图所示,若圆C的半径取到最大值,需圆与抛物线及直线x=3同时相切,设圆心的坐标为(a,0)(a3),则圆的方程为(x-a)2+y2=(3-a)2,与抛物线方程y2=2x联立得x2+(2-2a)x+6a-9=0,由判别式Δ=(2-2a)2-4(6a-9)=0,得a=4-6,故此时半径为3-(4-6)=6-1.
7.42
解析由题意可设AB的方程为y=kx+m,与抛物线方程联立得x2-4kx-4m=0,线段AB中点坐标为(2,2),x1+x2=4k=4,得k=1.
又∵y1+y2=k(x1+x2)+2m=4,
∴m=0.从而直线AB:y=x,|AB|=2|OM|=42.
8.324
解析抛物线的焦点F的坐标为p2,0,线段FA的中点B的坐标为p4,1,代入抛物线方程得1=2p×p4,解得p=2,故点B的坐标为24,1,故点B到该抛物线准线的距离为24+22=324.
9.解设直线和抛物线交于点A(x1,y1),B(x2,y2),
(1)当抛物线开口向右时,设抛物线方程为y2=2px(p0),则y2=2pxy=2x+1,消去y得,
4x2-(2p-4)x+1=0,
∴x1+x2=p-22,x1x2=14,(4分)
∴|AB|=1+k2|x1-x2|
=5x1+x22-4x1x2
=5p-222-4×14=15,(7分)
则p24-p=3,p2-4p-12=0,解得p=6(p=-2舍去),
抛物线方程为y2=12x.(9分)
(2)当抛物线开口向左时,设抛物线方程为y2=-2px(p0),仿(1)不难求出p=2,
此时抛物线方程为y2=-4x.(11分)
综上可得,
所求的抛物线方程为y2=-4x或y2=12x.(12分)
10.证明因为直线AB与x轴不垂直,
设直线AB的方程为y=kx+2,A(x1,y1),B(x2,y2).
由y=kx+2,y=18x2,
可得x2-8kx-16=0,x1+x2=8k,x1x2=-16.(4分)
抛物线方程为y=18x2,求导得y′=14x.(7分)
所以过抛物线上A、B两点的切线斜率分别是
k1=14x1,k2=14x2,k1k2=14x114x2
=116x1x2=-1.(10分)
所以AQ⊥BQ.(12分)
11.解(1)由题设点C到点F的距离等于它到l1的距离,
所以点C的轨迹是以F为焦点,l1为准线的抛物线,
∴所求轨迹的方程为x2=4y.(5分)
(2)由题意直线l2的方程为y=kx+1,与抛物线方程联立消去y得x2-4kx-4=0.
记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.(8分)
因为直线PQ的斜率k≠0,易得点R的坐标为-2k,-1.(9分)
RP→RQ→=x1+2k,y1+1x2+2k,y2+1
=x1+2kx2+2k+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k+2k(x1+x2)+4k2+4
=-4(1+k2)+4k2k+2k+4k2+4
=4k2+1k2+8,(11分)
∵k2+1k2≥2,当且仅当k2=1时取到等号.
RP→RQ→≥4×2+8=16,即RP→RQ→的最小值为16.(14分)

抛物线及其标准方程教案


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师准备好教案是必不可少的一步。教案可以让学生更容易听懂所讲的内容,帮助高中教师更好的完成实现教学目标。高中教案的内容要写些什么更好呢?为此,小编从网络上为大家精心整理了《抛物线及其标准方程教案》,仅供参考,欢迎大家阅读。

设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。
抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。
利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。
当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

高二数学抛物线的性质教案7


8.6抛物线的简单几何性质
我们根据抛物线的标准方程
y2=2px(p>0)①
来研究它的几何性质.
1.范围
因为p>0,由方程①可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程①不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程①中,当y=0时,x=0,因此抛物线①的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
例1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过
解:因为抛物线关于x轴对称,它的顶点在原点,并且经过点M(2,
y2=2px(p>0).
因为点M在抛物线上,所以

p=2.
因此所求方程是
y2=4x.
的范围内几个点的坐标,得
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(图8-23).
在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
这就是标准方程中2p的一种几何意义(图8-24).利用抛物线的几何性
抛物线基本特征的草图.
例2探照灯反射镜的轴截面是抛物线的一部分(图8-25(1)),光源位于抛物线的焦点处.已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.
解:如图8-25(2),在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是y2=2px(p>0).由已知条件可得点A的坐标是(40,30),代入方程,得
302=2p×40,

练习
1.求适合下列条件的抛物线方程:
(1)顶点在原点,关于x轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
(3)顶点在原点,准线是x=4;
(4)焦点是F(0,-8),准线是y=8.
小结:
1、抛物线的几何性质
2、在解题过程中要注意利用数形结合的数学思想

作业:
课本P1231、2、3

抛物线的简单几何性质


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在教学期间跟着互动起来,使教师有一个简单易懂的教学思路。那么如何写好我们的教案呢?以下是小编为大家收集的“抛物线的简单几何性质”大家不妨来参考。希望您能喜欢!

2.3.2抛物线的简单几何性质
(一)教学目标:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.
(二)教学重点:抛物线的几何性质及其运用
(三)教学难点:抛物线几何性质的运用
(四)教学过程:
一、复习引入:(学生回顾并填表格)
1.抛物线定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线叫做抛物线的准线.
图形

方程

焦点

准线

2.抛物线的标准方程:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的,即.
不同点:(1)图形关于x轴对称时,x为一次项,y为二次项,方程右端为、左端为;图形关于y轴对称时,x为二次项,y为一次项,方程右端为,左端为.(2)开口方向在x轴(或y轴)正向时,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口在x轴(或y轴)负向时,焦点在x轴(或y轴)负半轴时,方程右端取负号.
二、讲解新课:
类似研究双曲线的性质的过程,我们以为例来研究一下抛物线的简单几何性质:
1.范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
对于其它几种形式的方程,列表如下:(学生通过对照完成下表)
标准方程图形顶点对称轴焦点准线离心率

注意强调的几何意义:是焦点到准线的距离.
思考:抛物线有没有渐近线?(体会抛物线与双曲线的区别)
三、例题讲解:
例1已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形.
分析:首先由已知点坐标代入方程,求参数p.
解:由题意,可设抛物线方程为,因为它过点,
所以,即
因此,所求的抛物线方程为.
将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得
x01234…
y022.83.54…
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分
点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
例2斜率为1的直线经过抛物线y2=4x的焦点,与抛物线交于两点A、B,求线段AB的长.
解法1:如图所示,由抛物线的标准方程可知,焦点F(1,0),准线方程x=—1.
由题可知,直线AB的方程为y=x—1
代入抛物线方程y2=4x,整理得:x2—6x+1=0
解上述方程得x1=3+2,x2=3—2
分别代入直线方程得y1=2+2,y2=2—2
即A、B的坐标分别为(3+2,2+2),(3—2,2—2)
∴|AB|=
解法2:设A(x1,y1)、B(x2,y2),则x1+x2=6,x1x2=1
∴|AB|=|x1—x2|
解法3:设A(x1,y1)、B(x2,y2),由抛物线定义可知,
|AF|等于点A到准线x=—1的距离|AA′|
即|AF|=|AA′|=x1+1
同理|BF|=|BB′|=x2+1
∴|AB|=|AF|+|BF|=x1+x2+2=8
点评:解法2是利用韦达定理根与系数的关系,设而不求,是解析几何中求弦长的一种普遍适用的方法;解法3充分利用了抛物线的定义,解法简洁,值得引起重视。
变式训练:过抛物线的焦点作直线,交抛物线于,两点,若,求。
解:,,。
点评:由以上例2以及变式训练可总结出焦点弦弦长:或。
四、达标练习:
1.过抛物线的焦点作直线交抛物线于,两点,如果,那么=()
(A)10(B)8(C)6(D)4
2.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为()
(A)3(B)4(C)5(D)6
3.过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是______
4.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标.
参考答案:1.B2.B3.4.,M到轴距离的最小值为.
五、小结:抛物线的离心率、焦点、顶点、对称轴、准线、中心等.
六、课后作业:
1.根据下列条件,求抛物线的方程,并画出草图.
(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.
(2)顶点在原点,焦点在y轴上,且过P(4,2)点.
(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.
2.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2、B2,则∠A2FB2等于.
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.
4.以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.
5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?
习题答案:
1.(1)y2=±32x(2)x2=8y(3)x2=-8y
2.90°3.x2=±16y4.5.米
七、板书设计(略)

文章来源:http://m.jab88.com/j/52099.html

更多

最新更新

更多