学案53抛物线
导学目标:1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.
自主梳理
1.抛物线的概念
平面内与一个定点F和一条定直线l(Fl)距离______的点的轨迹叫做抛物线.点F叫做抛物线的__________,直线l叫做抛物线的________.
2.抛物线的标准方程与几何性质
标准方程y2=2px
(p0)y2=-2px
(p0)x2=2py
(p0)x2=-2py
(p0)
p的几何意义:焦点F到准线l的距离
图形
顶点O(0,0)
对称轴y=0x=0
焦点F(p2,0)
F(-p2,0)
F(0,p2)
F(0,-p2)
离心率e=1
准线方程x=-p2
x=p2
y=-p2
y=p2
范围x≥0,
y∈Rx≤0,
y∈Ry≥0,
x∈Ry≤0,
x∈R
开口方向向右向左向上向下
自我检测
1.(2010四川)抛物线y2=8x的焦点到准线的距离是()
A.1B.2C.4D.8
2.若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则p的值为()
A.-2B.2C.-4D.4
3.(2011陕西)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x
4.已知抛物线y2=2px(p0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1||FP3|
5.(2011佛山模拟)已知抛物线方程为y2=2px(p0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A、B两点,过点A、点B分别作AM、BN垂直于抛物线的准线,分别交准线于M、N两点,那么∠MFN必是()
A.锐角B.直角
C.钝角D.以上皆有可能
探究点一抛物线的定义及应用
例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标.
变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.14,-1B.14,1
C.(1,2)D.(1,-2)
探究点二求抛物线的标准方程
例2(2011芜湖调研)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.
变式迁移2根据下列条件求抛物线的标准方程:
(1)抛物线的焦点F是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4).
探究点三抛物线的几何性质
例3过抛物线y2=2px的焦点F的直线和抛物线相交于A,B两点,如图所示.
(1)若A,B的纵坐标分别为y1,y2,求证:y1y2=-p2;
(2)若直线AO与抛物线的准线相交于点C,求证:BC∥x轴.
变式迁移3已知AB是抛物线y2=2px(p0)的焦点弦,F为抛物线的焦点,A(x1,y1),B(x2,y2).求证:
(1)x1x2=p24;
(2)1|AF|+1|BF|为定值.
分类讨论思想的应用
例(12分)过抛物线y2=2px(p0)焦点F的直线交抛物线于A、B两点,过B点作其准线的垂线,垂足为D,设O为坐标原点,问:是否存在实数λ,使AO→=λOD→?
多角度审题这是一道探索存在性问题,应先假设存在,设出A、B两点坐标,从而得到D点坐标,再设出直线AB的方程,利用方程组和向量条件求出λ.
【答题模板】
解假设存在实数λ,使AO→=λOD→.
抛物线方程为y2=2px(p0),
则Fp2,0,准线l:x=-p2,
(1)当直线AB的斜率不存在,即AB⊥x轴时,
交点A、B坐标不妨设为:Ap2,p,Bp2,-p.
∵BD⊥l,∴D-p2,-p,
∴AO→=-p2,-p,OD→=-p2,-p,∴存在λ=1使AO→=λOD→.[4分]
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx-p2(k≠0),
设A(x1,y1),B(x2,y2),则D-p2,y2,x1=y212p,x2=y222p,
由y=kx-p2y2=2px得ky2-2py-kp2=0,∴y1y2=-p2,∴y2=-p2y1,[8分]
AO→=(-x1,-y1)=-y212p,-y1,OD→=-p2,y2=-p2,-p2y1,
假设存在实数λ,使AO→=λOD→,则-y212p=-p2λ-y1=-p2y1λ,解得λ=y21p2,∴存在实数λ=y21p2,使AO→=λOD→.
综上所述,存在实数λ,使AO→=λOD→.[12分]
【突破思维障碍】
由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A、D两点坐标关系,求出AO→和OD→的坐标,判断λ是否存在.
【易错点剖析】
解答本题易漏掉讨论直线AB的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.
1.关于抛物线的定义
要注意点F不在定直线l上,否则轨迹不是抛物线,而是一条直线.
2.关于抛物线的标准方程
抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于:
(1)p的几何意义:参数p是焦点到准线的距离,所以p恒为正数.
(2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向.
3.关于抛物线的几何性质
抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:
已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011大纲全国)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于()
A.45B.35
C.-35D.-45
2.(2011湖北)将两个顶点在抛物线y2=2px(p0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()
A.n=0B.n=1
C.n=2D.n≥3
3.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()
A.相离B.相交C.相切D.不确定
4.(2011泉州月考)已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()
A.-14,1B.(-2,22)
C.-14,-1D.(-2,-22)
5.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,若OA→AF→=-4,则点A的坐标为()
A.(2,±2)B.(1,±2)
C.(1,2)D.(2,2)
二、填空题(每小题4分,共12分)
6.(2011重庆)设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________.
7.(2011济宁期末)已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|=________.
8.(2010浙江)设抛物线y2=2px(p0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.
三、解答题(共38分)
9.(12分)已知顶点在原点,焦点在x轴上的抛物线截直线y=2x+1所得的弦长为15,求抛物线方程.
10.(12分)(2011韶关模拟)已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.
11.(14分)(2011济南模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹C于两点P、Q,交直线l1于点R,求RP→RQ→的最小值.
学案53抛物线
自主梳理
1.相等焦点准线
自我检测
1.C
2.B[因为抛物线的准线方程为x=-2,所以p2=2,所以p=4,所以抛物线的方程是y2=8x.所以选B.]
3.B4.C5.B
课堂活动区
例1解题导引重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.
解
将x=3代入抛物线方程
y2=2x,得y=±6.
∵62,∴A在抛物线内部.
设抛物线上点P到准线l:
x=-12的距离为d,由定义知
|PA|+|PF|=|PA|+d,
当PA⊥l时,|PA|+d最小,最小值为72,
即|PA|+|PF|的最小值为72,
此时P点纵坐标为2,代入y2=2x,得x=2,
∴点P坐标为(2,2).
变式迁移1A[
点P到抛物线焦点的距离等于点P到抛物线准线的距离,如图,|PF|+|PQ|=|PS|+|PQ|,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,点P的坐标为14,-1.]
例2解题导引(1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;
(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;
(3)解决抛物线相关问题时,要善于用定义解题,即把|PF|转化为点P到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.
解方法一设抛物线方程为
x2=-2py(p0),
则焦点为F0,-p2,准线方程为y=p2.
∵M(m,-3)在抛物线上,且|MF|=5,
∴m2=6p,m2+-3+p22=5,解得p=4,m=±26.
∴抛物线方程为x2=-8y,m=±26,
准线方程为y=2.
方法二如图所示,
设抛物线方程为x2=-2py(p0),
则焦点F0,-p2,
准线l:y=p2,作MN⊥l,垂足为N.
则|MN|=|MF|=5,而|MN|=3+p2,
∴3+p2=5,∴p=4.∴抛物线方程为x2=-8y,
准线方程为y=2.由m2=(-8)×(-3),得m=±26.
变式迁移2解(1)双曲线方程化为x29-y216=1,
左顶点为(-3,0),由题意设抛物线方程为y2=-2px(p0)且-p2=-3,∴p=6.∴方程为y2=-12x.
(2)由于P(2,-4)在第四象限且对称轴为坐标轴,可设方程为y2=mx(m0)或x2=ny(n0),代入P点坐标求得m=8,n=-1,
∴所求抛物线方程为y2=8x或x2=-y.
例3解题导引解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB为焦点弦,以y2=2px(p0)为例):
①y1y2=-p2,x1x2=p24;
②|AB|=x1+x2+p.
证明(1)方法一由抛物线的方程可得焦点坐标为Fp2,0.设过焦点F的直线交抛物线于A,B两点的坐标分别为(x1,y1)、(x2,y2).
①当斜率存在时,过焦点的直线方程可设为
y=kx-p2,由y=kx-p2,y2=2px,
消去x,得ky2-2py-kp2=0.(*)
当k=0时,方程(*)只有一解,∴k≠0,
由韦达定理,得y1y2=-p2;
②当斜率不存在时,得两交点坐标为
p2,p,p2,-p,∴y1y2=-p2.
综合两种情况,总有y1y2=-p2.
方法二由抛物线方程可得焦点Fp2,0,设直线AB的方程为x=ky+p2,并设A(x1,y1),B(x2,y2),
则A、B坐标满足x=ky+p2,y2=2px,
消去x,可得y2=2pky+p2,
整理,得y2-2pky-p2=0,∴y1y2=-p2.
(2)直线AC的方程为y=y1x1x,
∴点C坐标为-p2,-py12x1,yC=-py12x1=-p2y12px1.
∵点A(x1,y1)在抛物线上,∴y21=2px1.
又由(1)知,y1y2=-p2,∴yC=y1y2y1y21=y2,∴BC∥x轴.
变式迁移3证明(1)∵y2=2px(p0)的焦点Fp2,0,设直线方程为y=kx-p2(k≠0),
由y=kx-p2y2=2px,消去x,得ky2-2py-kp2=0.
∴y1y2=-p2,x1x2=y1y224p2=p24,
当k不存在时,直线方程为x=p2,这时x1x2=p24.
因此,x1x2=p24恒成立.
(2)1|AF|+1|BF|=1x1+p2+1x2+p2
=x1+x2+px1x2+p2x1+x2+p24.
又∵x1x2=p24,代入上式得1|AF|+1|BF|=2p=常数,
所以1|AF|+1|BF|为定值.
课后练习区
1.D[方法一由y=2x-4,y2=4x,得x=1,y=-2或x=4,y=4.
令B(1,-2),A(4,4),又F(1,0),
∴由两点间距离公式得|BF|=2,|AF|=5,|AB|=35.
∴cos∠AFB=|BF|2+|AF|2-|AB|22|BF||AF|=4+25-452×2×5
=-45.
方法二由方法一得A(4,4),B(1,-2),F(1,0),
∴FA→=(3,4),FB→=(0,-2),
∴|FA→|=32+42=5,|FB→|=2.
∴cos∠AFB=FA→FB→|FA→||FB→|=3×0+4×-25×2=-45.]
2.C[
如图所示,A,B两点关于x轴对称,F点坐标为(p2,0),设A(m,2pm)(m0),则由抛物线定义,
|AF|=|AA1|,
即m+p2=|AF|.
又|AF|=|AB|=22pm,
∴m+p2=22pm,整理,得m2-7pm+p24=0,①
∴Δ=(-7p)2-4×p24=48p20,
∴方程①有两相异实根,记为m1,m2,且m1+m2=7p0,m1m2=p240,
∴m10,m20,∴n=2.]
3.C
4.A[过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,
∴|PA|+|PF|=|PA|+|PK|.
∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=-4x,得x=-14,即当P点的坐标为-14,1时,|PA|+|PF|最小.]
5.B
6.6-1
解析如图所示,若圆C的半径取到最大值,需圆与抛物线及直线x=3同时相切,设圆心的坐标为(a,0)(a3),则圆的方程为(x-a)2+y2=(3-a)2,与抛物线方程y2=2x联立得x2+(2-2a)x+6a-9=0,由判别式Δ=(2-2a)2-4(6a-9)=0,得a=4-6,故此时半径为3-(4-6)=6-1.
7.42
解析由题意可设AB的方程为y=kx+m,与抛物线方程联立得x2-4kx-4m=0,线段AB中点坐标为(2,2),x1+x2=4k=4,得k=1.
又∵y1+y2=k(x1+x2)+2m=4,
∴m=0.从而直线AB:y=x,|AB|=2|OM|=42.
8.324
解析抛物线的焦点F的坐标为p2,0,线段FA的中点B的坐标为p4,1,代入抛物线方程得1=2p×p4,解得p=2,故点B的坐标为24,1,故点B到该抛物线准线的距离为24+22=324.
9.解设直线和抛物线交于点A(x1,y1),B(x2,y2),
(1)当抛物线开口向右时,设抛物线方程为y2=2px(p0),则y2=2pxy=2x+1,消去y得,
4x2-(2p-4)x+1=0,
∴x1+x2=p-22,x1x2=14,(4分)
∴|AB|=1+k2|x1-x2|
=5x1+x22-4x1x2
=5p-222-4×14=15,(7分)
则p24-p=3,p2-4p-12=0,解得p=6(p=-2舍去),
抛物线方程为y2=12x.(9分)
(2)当抛物线开口向左时,设抛物线方程为y2=-2px(p0),仿(1)不难求出p=2,
此时抛物线方程为y2=-4x.(11分)
综上可得,
所求的抛物线方程为y2=-4x或y2=12x.(12分)
10.证明因为直线AB与x轴不垂直,
设直线AB的方程为y=kx+2,A(x1,y1),B(x2,y2).
由y=kx+2,y=18x2,
可得x2-8kx-16=0,x1+x2=8k,x1x2=-16.(4分)
抛物线方程为y=18x2,求导得y′=14x.(7分)
所以过抛物线上A、B两点的切线斜率分别是
k1=14x1,k2=14x2,k1k2=14x114x2
=116x1x2=-1.(10分)
所以AQ⊥BQ.(12分)
11.解(1)由题设点C到点F的距离等于它到l1的距离,
所以点C的轨迹是以F为焦点,l1为准线的抛物线,
∴所求轨迹的方程为x2=4y.(5分)
(2)由题意直线l2的方程为y=kx+1,与抛物线方程联立消去y得x2-4kx-4=0.
记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.(8分)
因为直线PQ的斜率k≠0,易得点R的坐标为-2k,-1.(9分)
RP→RQ→=x1+2k,y1+1x2+2k,y2+1
=x1+2kx2+2k+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k+2k(x1+x2)+4k2+4
=-4(1+k2)+4k2k+2k+4k2+4
=4k2+1k2+8,(11分)
∵k2+1k2≥2,当且仅当k2=1时取到等号.
RP→RQ→≥4×2+8=16,即RP→RQ→的最小值为16.(14分)
一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师准备好教案是必不可少的一步。教案可以让学生更容易听懂所讲的内容,帮助高中教师更好的完成实现教学目标。高中教案的内容要写些什么更好呢?为此,小编从网络上为大家精心整理了《抛物线及其标准方程教案》,仅供参考,欢迎大家阅读。
设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。8.6抛物线的简单几何性质
我们根据抛物线的标准方程
y2=2px(p>0)①
来研究它的几何性质.
1.范围
因为p>0,由方程①可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程①不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程①中,当y=0时,x=0,因此抛物线①的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
例1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过
解:因为抛物线关于x轴对称,它的顶点在原点,并且经过点M(2,
y2=2px(p>0).
因为点M在抛物线上,所以
即
p=2.
因此所求方程是
y2=4x.
的范围内几个点的坐标,得
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(图8-23).
在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
这就是标准方程中2p的一种几何意义(图8-24).利用抛物线的几何性
抛物线基本特征的草图.
例2探照灯反射镜的轴截面是抛物线的一部分(图8-25(1)),光源位于抛物线的焦点处.已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.
解:如图8-25(2),在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是y2=2px(p>0).由已知条件可得点A的坐标是(40,30),代入方程,得
302=2p×40,
练习
1.求适合下列条件的抛物线方程:
(1)顶点在原点,关于x轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
(3)顶点在原点,准线是x=4;
(4)焦点是F(0,-8),准线是y=8.
小结:
1、抛物线的几何性质
2、在解题过程中要注意利用数形结合的数学思想
作业:
课本P1231、2、3
俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在教学期间跟着互动起来,使教师有一个简单易懂的教学思路。那么如何写好我们的教案呢?以下是小编为大家收集的“抛物线的简单几何性质”大家不妨来参考。希望您能喜欢!
2.3.2抛物线的简单几何性质
(一)教学目标:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.
(二)教学重点:抛物线的几何性质及其运用
(三)教学难点:抛物线几何性质的运用
(四)教学过程:
一、复习引入:(学生回顾并填表格)
1.抛物线定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线叫做抛物线的准线.
图形
方程
焦点
准线
2.抛物线的标准方程:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的,即.
不同点:(1)图形关于x轴对称时,x为一次项,y为二次项,方程右端为、左端为;图形关于y轴对称时,x为二次项,y为一次项,方程右端为,左端为.(2)开口方向在x轴(或y轴)正向时,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口在x轴(或y轴)负向时,焦点在x轴(或y轴)负半轴时,方程右端取负号.
二、讲解新课:
类似研究双曲线的性质的过程,我们以为例来研究一下抛物线的简单几何性质:
1.范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
对于其它几种形式的方程,列表如下:(学生通过对照完成下表)
标准方程图形顶点对称轴焦点准线离心率
注意强调的几何意义:是焦点到准线的距离.
思考:抛物线有没有渐近线?(体会抛物线与双曲线的区别)
三、例题讲解:
例1已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形.
分析:首先由已知点坐标代入方程,求参数p.
解:由题意,可设抛物线方程为,因为它过点,
所以,即
因此,所求的抛物线方程为.
将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得
x01234…
y022.83.54…
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分
点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
例2斜率为1的直线经过抛物线y2=4x的焦点,与抛物线交于两点A、B,求线段AB的长.
解法1:如图所示,由抛物线的标准方程可知,焦点F(1,0),准线方程x=—1.
由题可知,直线AB的方程为y=x—1
代入抛物线方程y2=4x,整理得:x2—6x+1=0
解上述方程得x1=3+2,x2=3—2
分别代入直线方程得y1=2+2,y2=2—2
即A、B的坐标分别为(3+2,2+2),(3—2,2—2)
∴|AB|=
解法2:设A(x1,y1)、B(x2,y2),则x1+x2=6,x1x2=1
∴|AB|=|x1—x2|
解法3:设A(x1,y1)、B(x2,y2),由抛物线定义可知,
|AF|等于点A到准线x=—1的距离|AA′|
即|AF|=|AA′|=x1+1
同理|BF|=|BB′|=x2+1
∴|AB|=|AF|+|BF|=x1+x2+2=8
点评:解法2是利用韦达定理根与系数的关系,设而不求,是解析几何中求弦长的一种普遍适用的方法;解法3充分利用了抛物线的定义,解法简洁,值得引起重视。
变式训练:过抛物线的焦点作直线,交抛物线于,两点,若,求。
解:,,。
点评:由以上例2以及变式训练可总结出焦点弦弦长:或。
四、达标练习:
1.过抛物线的焦点作直线交抛物线于,两点,如果,那么=()
(A)10(B)8(C)6(D)4
2.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为()
(A)3(B)4(C)5(D)6
3.过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是______
4.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标.
参考答案:1.B2.B3.4.,M到轴距离的最小值为.
五、小结:抛物线的离心率、焦点、顶点、对称轴、准线、中心等.
六、课后作业:
1.根据下列条件,求抛物线的方程,并画出草图.
(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.
(2)顶点在原点,焦点在y轴上,且过P(4,2)点.
(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.
2.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2、B2,则∠A2FB2等于.
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.
4.以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.
5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?
习题答案:
1.(1)y2=±32x(2)x2=8y(3)x2=-8y
2.90°3.x2=±16y4.5.米
七、板书设计(略)
文章来源:http://m.jab88.com/j/52099.html
更多