§2.4.2抛物线及其几何性质(2)
一、知识要点
1.了解抛物线过焦点弦的简单性质;
2.在对抛物线几何性质的讨论中,注意数与形的结合与转化。
二、典型例题
例1.⑴设是抛物线上一点,为焦点,求的长;
⑵已知是过抛物线的焦点的直线与抛物线的两个交点,求证:。
例2.已知定点,抛物线上的动点到焦点的距离为,求的最小值,并确定取最小值时点的坐标。
例3.设过抛物线的焦点的一条直线和抛物线有两个交点,且两个交点的纵坐标为,求证:。
例4.已知直线为抛物线相交于点,求证:。
三、巩固练习
1.已知动圆的圆心在抛物线上,且与抛物线的准线相切,求证:圆必经过定点,并求出这个定点。
2.若直线过抛物线的焦点,与抛物线交于两点,且线段中点的横坐标是2,求线段的长。
3.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程、准线方程。
四、小结
五、课后作业
1.焦点为的抛物线的标准方程是;
2.顶点在原点,焦点在轴上的抛物线上有一点到焦点的距离为5,则=;
3.已知抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是;
4.已知抛物线的弦垂直于轴,若,则焦点到直线的距离为;
5.斜率为1的直线经过抛物线的焦点,与抛物线相交于,求线段的长。
6.已知是抛物线上三点,且它们到焦点的距离成等差数列,求证:。
7.直角三角形的三个顶点都在抛物线上,其中直角顶点为原点,所在直线的方程为,的面积为,求该抛物线的方程。
8.是抛物线上两点,且满足,其中为抛物线顶点,
求证:⑴两点的纵坐标乘积为定值;⑵直线恒过一定点。
订正栏:
§2.3.2抛物线的几何性质(1)
【学情分析】:
由于学生具备了曲线与方程的部分知识,掌握了研究解析几何的基本方法,因而利用已有椭圆与双曲线的知识,引导学生独立发现、归纳知识,指导学生在实践和创新意识上下工夫,训练基本技能。
【教学目标】:
(1)知识与技能:
熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。
(2)过程与方法:
重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考。
(3)情感、态度与价值观:
培养严谨务实,实事求是的个性品质和数学交流合作能力,以及勇于探索,勇于创新的求知意识,激发学生学习数学的兴趣与热情。
【教学重点】:
熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。
【教学难点】:
熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质及其应用。
【课前准备】:
Powerpoint或投影片
【教学过程设计】:
教学环节教学活动设计意图
一、复习引入
1.已知抛物线的焦点坐标是F(0,-2),求它的标准方程.
解:焦点在x轴负半轴上,=2,所以所求抛物线的标准方程是
2.填空:动点M与定点F的距离和它到定直线的距离的比等于e,则当0<e<1时,动点M的轨迹是椭圆;当e=1时,动点M的轨迹是抛物线;当e>1时,动点M的轨迹是双曲线.
3.复习椭圆、双曲线几何性质的主要内容:
通过离心率的填空引出抛物线。引起学生的兴趣。
二、抛物线的几何性质类比研究归纳抛物线的几何性质:
引导学生填写表格。通过对比,让学生掌握抛物线的四种图形、标准方程、焦点坐标以及准线方程。
三、例题讲解例1已知抛物线的顶点在原点,对称轴为坐标轴,且过点A(4,2),求这条抛物线的准线方程。
解:⑴若抛物线开口向右,
设抛物线的标准方程为
∵
∴
∴抛物线的标准方程为
⑵若抛物线开口向上,
设抛物线的标准方程为
∵
∴
∴抛物线的标准方程为
例2汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处。已知灯口的直径是24cm,灯深10cm,那么灯泡与反射镜的顶点距离是多少?
让学生运用抛物线的几何性质,写出符合条件的抛物线的准线方程。
三、例题讲解分析:依标准方程特点和几何性质建系,由待定系数法求解,强调方程的完备性。
解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,轴垂直于灯口直径.
抛物线的标准方程为,由已知条件可得点的坐标是(40,30)且在抛物线上,代入方程得:,
所以所求抛物线的标准方程为,焦点坐标是.
例3过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,
求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.设AB的中点为E,过A、E、B分别向准线引垂线AD,EH,BC,垂足为D、H、C,则
|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|=|AD|+|BC|=2|EH|
所以EH是以AB为直径的圆E的半径,且EH⊥l,
因而圆E和准线相切.
运用抛物线的几何性质解决现实生活中的问题,提高学生学习数学的兴趣和综合解题能力。
四、巩固练习1.过抛物线的焦点作直线交抛物线于,两点,如果,那么=(B)
(A)10(B)8(C)6(D)4
2.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为(B)
(A)3(B)4(C)5(D)6
3.过抛物线的焦点作直线交抛物线于、两点,若线段、的长分别是、,则=(C)
(A)(B)(C)(D)
4.过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是
5.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标
(答案:,M到轴距离的最小值为)
6.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方
因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离
得p=4.
因此,所求抛物线方程为y2=-8x.
又点M(-3,m)在此抛物线上,故m2=-8(-3).
解法二:由题设列两个方程,可求得p和m.由题意
在抛物线上且|MF|=5,故
分层训练,让学生牢牢掌握抛物线的几何性质。
由学生演板.
五、课后练习1.根据下列条件,求抛物线的方程,并画出草图.
(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.
(2)顶点在原点,焦点在y轴上,且过P(4,2)点.
(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.
2.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2,B2,则∠A2FB2等于
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.
4.以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.
5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?
6.已知抛物线关于x轴对称,顶点在坐标原点,其上一点M(2,m)到焦点的距离等于3,求抛物线方程及m值。
习题答案:
1.(1)y2=±32x(2)x2=8y(3)x2=-8y
2.90°3.x2=±16y4.
5.米6.y2=4x,m=或
课后练习注意分层训练,让学生牢牢掌握抛物线的几何性质。
练习与测试:
1.求适合下列条件的抛物线的方程:
(1)顶点在原点,焦点为(0,5);
(2)对称轴为x轴,顶点在原点,且过点(-3,4)。
2.若P(x0,y0)是抛物线y2=-32x上一点,F为抛物线的焦点,则PF=()。
(A)x0+8(B)x0-8(C)8-x0(D)x0+16
3.一个抛物线型拱桥,当水面离拱顶2m时,水面宽4m,若水面下降1m,求水面宽度。
4.已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程.
解:由题意,可设抛物线方程为,因为它过点,
所以,即
因此,所求的抛物线方程为.
5.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置.
分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p值.
解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是(p>0).
由已知条件可得点A的坐标是(40,30),代入方程,得,
即
所求的抛物线标准方程为.
古人云,工欲善其事,必先利其器。作为教师就要根据教学内容制定合适的教案。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师掌握上课时的教学节奏。写好一份优质的教案要怎么做呢?小编特地为大家精心收集和整理了“《抛物线的简单性质》导学案”,欢迎阅读,希望您能阅读并收藏。
2.2抛物线的简单性质
授课
时间第周星期第节课型讲授新课主备课人张梅
学习
目标依据抛物线图形及标准方程,概括出抛物线的简单性质.掌握性质与图形的对应关系,能依据性质画抛物线简图
重点难点重点是由图形和方程观察概括出性质,离心率的意义及转化是难点
学习
过程
与方
法自主学习
【回顾】抛物线的标准方程有:
阅读课本P74至75例5前,回答:标准方程中
①抛物线关于对称,其对称轴叫作抛物线的轴,抛物线只有对称轴
②抛物线的范围为
③抛物线的顶点
④抛物线的离心率是指,即e=
⑤抛物线的通径
2.阅读例5,完成表格:
抛物线方程焦点顶点
精讲互动:
⑴阅读P75《思考交流》自主完成
⑵自主完成课本P75练习
达标训练:
⑴抛物线上到直线的距离最小的点的坐标是()
⑵抛物线的顶点是椭圆的中心,而焦点是椭圆的左焦点,求抛物线的方程
布置1求顶点在原点,对称轴是坐标轴,焦点在直线上的抛物线方程
2过抛物线的焦点F作垂直于轴的直线,交抛物线于A、B两点,求以F为圆心,AB为直径的圆的方程
学习小结/教学
反思
§2.3.2抛物线的几何性质(2)
【学情分析】:
由于学生具备了曲线与方程的部分知识,掌握了研究解析几何的基本方法,因而利用已有椭圆与双曲线的知识,引导学生独立发现、归纳知识,指导学生在实践和创新意识上下工夫,训练基本技能。
【教学目标】:
(1)知识与技能:
熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质;掌握直线与抛物线位置关系等相关概念及公式。
(2)过程与方法:
重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考。
(3)情感、态度与价值观:
培养严谨务实,实事求是的个性品质和数学交流合作能力,以及勇于探索,勇于创新的求知意识,激发学生学习数学的兴趣与热情。
【教学重点】:
抛物线的几何性质及其运用。
【教学难点】:
抛物线几何性质的运用。
【课前准备】:
Powerpoint或投影片
【教学过程设计】:
教学环节教学活动设计意图
一、复习引入
回顾抛物线的几何性质:
将基本公式用填空的形式巩固。
二、知识准备设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:
或
二、例题讲解例1.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长.
分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们公共的对称轴,则容易求出三角形边长.
解:如图,设正三角形OAB的顶点A、B在抛物线上,且坐标分别为、,则,
又|OA|=|OB|,所以
即
∵,∴.
由此可得,即线段AB关于x轴对称.
因为x轴垂直于AB,且∠AOx=30°,所以
所以,
例2.过抛物线y=的焦点作倾斜角为α的直线l与抛物线交于A、B两点,且|AB|=8,求倾斜角α.
解:抛物线标准方程为x2=-4y,则焦点F(0,-1)
⑴当α=90°时,则直线l:x=0(不合题意,舍去)
⑵当α≠90°时,设k=tanα,则直线l:y+1=kx;即y=kx-1.与x2=-4y联立,消去y得:x2+4kx-4=0
则x1+x2=-4k;x1x2=-4;
∴=
∴==4(1+k2)=8
∴k=±1
∴α=45°或135°
圆锥曲线的弦长求法
二、例题讲解例3.已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值.
解:设与抛物线交于
由弦长公式
|AB|===3
则有
由
从而由于p0,解得
圆锥曲线的中点弦问题
三、巩固练习1.若正三角形一顶点在原点,另外两点在抛物线y2=4x上,求此正三角形的边长。
(答案:边长为8)
2.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求正三角形外接圆的方程
分析:依题意可知圆心在轴上,且过原点,
故可设圆的方程为:,
又∵圆过点,
∴所求圆的方程为
3.已知抛物线,过点(4,1)引一弦,使它恰在这点被平分,则此弦所在直线方程为
解析:设直线与抛物线交点为则
,
4.已知直线与抛物线相交于、两点,若,(为原点)且,求抛物线的方程
(答案:)
5.顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程
(答案:或)
四、课后练习1.斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.
解:如图,由抛物线的标准方程可知,
抛物线焦点的坐标为F(1,0),
所以直线AB的方程为y=x-1①
与y2=4x②联立,解得:
将x1、x2的值代入方程①中,得
即A、B的坐标分别为
、
2.已知抛物线与直线相交于、两点,以弦长为直径的圆恰好过原点,求此抛物线的方程
(答案:)
3.已知的三个顶点是圆与抛物线的交点,且的垂心恰好是抛物线的焦点,求抛物线的方程
(答案:)
4.已知直角的直角顶点为原点,、在抛物线上,(1)分别求、两点的横坐标之积,纵坐标之积;(2)直线是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由;(3)求点在线段上的射影的轨迹方程
答案:(1);;
(2)直线过定点
(3)点的轨迹方程为
5.已知直角的直角顶点为原点,、在抛物线上,原点在直线上的射影为,求抛物线的方程(答案:)
练习与测试:
1.顶点在原点,焦点在y轴上,且过点P(4,2)的抛物线方程是()
(A)x2=8y(B)x2=4y(C)x2=2y(D)
2.抛物线y2=8x上一点P到顶点的距离等于它们到准线的距离,这点坐标是(A)(2,4)(B)(2,±4)(C)(1,)(D)(1,±)
3.直线过抛物线的焦点,并且与轴垂直,若被抛物线截得的线段长为4,则()
A.4B.2C.D.
4.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长等于8,则抛物线方程为
5.抛物线y2=-6x,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是
6.以双曲线的右准线为准线,以坐标原点O为顶点的抛物线截双曲线的左准线得弦AB,求△OAB的面积.
7.已知抛物线与直线相交于A、B两点,
①求证;;
②当的面积等于时,求的值.
测试题答案:
1.A2.D3.A4.x2=±8y5.6.
7.解析(证明):设;
,由A,N,B共线
,又
--------------------------------------------------------------③
②由得
文章来源:http://m.jab88.com/j/44754.html
更多