88教案网

1.4有理数的除法教学设计

教案课件是老师需要精心准备的,是认真规划好自己教案课件的时候了。认真做好教案课件的工作计划,才能促进我们的工作进一步发展!有没有出色的范文是关于教案课件的?下面是小编精心为您整理的“1.4有理数的除法教学设计”,欢迎阅读,希望您能够喜欢并分享!

(一)创设情境,复习导入

师:以上我们学习了有理数的乘法,这节我们应该学习有理数的除法,板书课题.

【教法说明】有理数的除法同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习有理数的除法.

(二)探索新知,讲授新课

1.倒数.

(出示投影1)

4×()=1;×()=1;0.5×()=1;
0×()=1;-4×()=1;×()=1.

学生活动:口答以上题目.

【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

师问:两个数乘积是1,这两个数有什么关系?

学生活动:乘积是1的两个数互为倒数.(板书)

师问:0有倒数吗?为什么?

学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.

师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

(出示投影2)

求下列各数的倒数:

(1);(2);(3);
(4);(5)-5;(6)1.

学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

2.有理数的除法

计算:8÷(-4).

计算:8×()=?(-2)

∴8÷(-4)=8×().

再尝试:-16÷(-2)=?-16×()=?

师:根据以上题目,你能说出怎样计算有理数的除法吗?能用含字母的式子表示吗?

学生活动:同桌互相讨论.(一个学生回答)

师强调后板书:

[板书]

【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

(三)尝试反馈,巩固练习

师在黑板上出示例题.

计算(1)(-36)÷9,(2)()÷().

学生尝试做此题目.

(出示投影3)

1.计算:

(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;

(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).

2.计算:

(1)()÷();(2)(-6.5)÷0.13;

(3)()÷();(4)÷(-1).

学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).

【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

学生活动:分组讨论,1—2个同学回答.

[板书]

2.两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何不等于0的数,都得0.

【教法说明】通过上组练习的结果,不难看出有理数的除法与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

(四)变式训练,培养能力

回顾例1计算:(1)(-36)÷9;(2)()÷().

提出问题:每个题目你想采用哪种法则计算更简单?

学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

(2)题仍用除以一个数等于乘以这个数的倒数较简单.

提出问题:-36:9=?;:()=?它们都属于除法运算吗?

学生活动:口答出答案.

(出示投影4)

例2化简下列分数

(1);(2);(3)或3:(-36)

(4);(5).

例3计算

(1)()÷(-6);(2)-3.5÷×();

(3)(-6)÷(-4)×().

学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

如在(1)()÷(-6)中.

根据方法①()÷(-6)=×()=.

根据方法②()÷(-6)=(24+)×=4+=.

让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

(五)归纳小结

师:今天我们学习了有理数的除法及倒数的概念,回答问题:

1.的倒数是__________________();

2.;

3.若、同号,则;

若、异号,则;

若,时,则;

学生活动:分组讨论,三个学生口答.

【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

八、随堂练习

1.填空题

(1)的倒数为__________,相反数为____________,绝对值为___________

(2)(-18)÷(-9)=_____________;

(3)÷(-2.5)=_____________;

(4);

(5)若,是;

(6)若、互为倒数,则;

(7)或、互为相反数且,则,;

(8)当时,有意义;

(9)当时,;

(10)若,,则,和符号是_________,___________.

2.计算

(1)-4.5÷()×;

(2)(-12)÷〔(-3)+(-15)〕÷(+5).

九、布置作业

(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

2.计算:(1)()×()÷();

(2)-6÷(-0.25)×.

3.当,,时求的值.

(二)选做题:1.填空:用“>”“<”“=”号填空

(1)如果,则,;

(2)如果,则,;

(3)如果,则,;

(4)如果,则,;

2.判断:正确的打“√”错的打“×”

(1)();

(2)().

3.(1)倒数等于它本身的数是______________.

(2)互为相反数的数(0除外)商是________________.

【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

延伸阅读

有理数的除法1


老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“有理数的除法1”,欢迎阅读,希望您能够喜欢并分享!

1.7有理数的除法
学习目标
1、理解有理数除法的法则,会进行有理数的除法运算
2、会求有理数的倒数
3、培养类比、拓展、观察、归纳、表达、转化等能力
重点:有理数除法运算法则的理解和运用
难点:除法和乘法的相通性及转化方法及两个法则的灵活运用教学过程
一、回顾引入
回顾倒数的概念:
4×()=1;×()=1;0.5×()=1;
-4×()=1;×()=1.
思考1:两个数乘积是1,这两个数有什么关系?
由此可得倒数概念是:
思考2:0有倒数吗?为什么?
思考3:负数有倒数吗?有的话,那么-4、的倒数分别是多少?
思考4:根据以上题目,你会求整数、分数、小数的倒数吗?
【做一做】求下列各数的倒数:
(1);(2)3;(3)0.2;(4)5;(5)-5;(6)1.
2、回顾正数范围内乘除法逆运算关系:
如12÷3=□可化为□×3=12从而求□
类比得出,(-12)÷(-3)=□可化为□×(-3)=(-12)求□
你能算出□来吗?
二、自主探究
有理数除法法则
1、总结有理数除法和小学除法的联系:在确定符号后,实际上已经转化为小学除法。
2、小学除法技巧:除法可以转化为乘法,除以一个数等于乘以这个数的倒数。
3、有理数的除法
计算:8÷(-4)=?计算:8×()=?
很容易就能算出:8÷(-4)=-28×()=-2
∴8÷(-4)=8×().
再尝试:-16÷(-2)=?-16×()=?
根据以上题目,你能说出怎样计算有理数的除法吗?能用含字母的式子表示吗?
归纳:有理数除法是可以转化为有理数乘法的,有理数除法法则是:
除以一个数,等于乘以这个数的倒数。
用字母表示为:
三、随堂练习
1、计算(1)(-36)÷9(2)()÷()
2、说一说相反数、绝对值、倒数的区别。试求的相反数、绝对值、倒数。
四、小结
1、与前面所学的有理数加法、减法、乘法一样,进行有理数除法运算,也应该
特别注意符号。
2、有理数除法运算步骤:
(1)把除法化成乘法,乘以除数的倒数;
(2)除法运算化成乘法运算之后,先确定符号。
五、当堂训练
1、-6的倒数是________,-6的倒数的倒数是________;
-6的相反数是________,-6的相反数的相反数是________;
-6的绝对值是
2、计算:
(1)(-18)÷6;(2)(-63)÷(-7);
(3)(-36)÷6;(4)1÷(-9);
(5)0÷(-8);(6)16÷(-3).
3、计算:
(1)()÷();(2)(-6.5)÷0.13;
(3)()÷();(4)÷(-1).
(5)(6)
(7)(8)
(9)(10)

有理数的除法教案


2.9有理数的除法
教学目标:
知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.
过程与方法:通过有理数除法的法则的导出及运用,学生能体会转化的思想。
感知数学知识具有普遍联系性、相互转化性。
情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。
体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。
教学重点:有理数的除法法则及其运用
教学难点:(1)商的符号的确定。(2)0不能作除数的理解。
教材分析:乘法与除法互为逆运算,小学已经学过。通过实例引入,说明它在有理数的范围内也成立。本节内容在学生已有有理数乘法知识的基础上,通过学生经历从具体情景中抽象出法则的过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。
教具:多媒体课件
教学方法:引导发现法类比归纳法
课时安排:一课时
环节教师活动学生活动设计意图



新创设情境
问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录如下:+5、-20。-19。-14。求:这四名同学的平均成绩是超过80分或不足80分?学生在教师的激情互动中,思考列式(+5-20-19-14)÷4
化简:(-48)÷4=?(但不知如何计算)
揭示课题

从实际生活引入,体现数学知识源于生活及数学的现实意义。
复习回顾前置补偿
求下列各数的倒数:
(1)-;(2)4;(3)0.2(4)-0.25;(5)-1
学生对老师的提问进行抢答为学习今天的有理数除法先复习小学倒数概念
探究活动一课件出示练习题
填空:
①8÷(-2)=8×();
②6÷(-3)=6×();
③-6÷()=-6×;
④-6÷()=-6×。
教师强调0没有倒数。学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)
培养学生发现问题总结问题的能力
探究活动二引例1计算:(-6)÷2
根据除法是乘法的逆运算,引导学生将有理数的除法运算转化为学生已知的乘法运算。

强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算

学生归纳导出法则(一):除以一个数等于乘以这个数的倒数

小组合作交流探究发现结果
探究活动三

(举例强化已导出的法则)
例1计算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)

教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种方法。
学生自己观察回忆,进行自主学习和合作交流,得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)
激发学生学习的积极性和主动性满足学生的表现欲和探究欲)

强化练习课本例2计算:
(1)(-)÷(-6)÷(-)
(2)(-)÷(-)

学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。
反馈矫正
课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性
归纳小节1、学习内容:倒数的概念及求法;有理数的除法
2、通过本节的学习,你有哪些体会?请与同学交流。
同学之间进行交流,小结本节内容培养了学生总结问题的能力
作业布置必做题:课本70页第1,3,4题
选做题:若ab≠0,则可能的取值是_______.综合考查,学以致用。不同的学生得到不同的发展
附:板书设计
2.9有理数的除法

例1计算:练习处:
例2计算:
教学反思:
《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力。
在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。

有理数除法


内容:有理数除法(第2课时)

学习目标:

1、学会进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理

教学方法:观察、类比、对比、归纳教学过程

一、学前准备

1、计算

1)(—0.0318)÷(—1.4)2)2+(—8)÷2

二、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P35—P37页内容

4、结合问题2,你先猜想,有理数的混合运算顺序应该是

.

例6化简下列分数:(1);(2).

强调:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.例7计算:(1)(-125)÷(-5);(2)-2.5÷;

三、新知应用

1、计算

1)、18—6÷(—2)×2)11+(—22)—3×(—11)

3)(—0.1)÷×(—100)

2.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?

3.巩固练习(计算):(1)(-0.4)÷(+0.02)×(-5);(2)2÷(-)×÷(-5);

(3)(-5)÷(-15)÷(-3);(4)(-)÷(-1)-(+)÷(-).

(5)-1÷(-5)×;(6)-209÷19.

4.某冷冻厂的一个冷库现在的室温是-4℃,现有一批食品需要在-30℃冷藏.如果每小时降温4℃,问几小时能降到所需要的温度?5.某人用1000元人民币购进一批货物,第二天出售,获利10%;过几天后又以上次售出价的90%购进一批同样的货,由于卖不出去,两天后他将其按第二次购进价的九折全部卖出.他在这两次交易中盈亏如何?

四、回顾与反思

请你回顾本节课所学习的主要内容

五、自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数

2)下列说法正确的是()

A.负数没有倒数B.正数的倒数比自身小

C.任何有理数都有倒数D.-1的倒数是-1

3)关于0,下列说法不正确的是()

A.0有相反数B.0有绝对值

C.0有倒数D.0是绝对值和相反数都相等的数

4)下列运算结果不一定为负数的是()

A.异号两数相乘B.异号两数相除

C.异号两数相加D.奇数个负因数的乘积

5)下列运算有错误的是()

A.÷(-3)=3×(-3)B.

C.8-(-2)=8+2D.2-7=(+2)+(-7)

6)下列运算正确的是()

A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)

(5)(-12)÷1.4-(-8)÷(-1.4)+(+10)÷1.4

(6){2-[(1.5×2)÷-1]}÷=-22

文章来源:http://m.jab88.com/j/49758.html

更多

最新更新

更多