课题:§5.2不等式的基本性质
教学目标:
知识目标:掌握不等式的基本性质.
能力目标:通过不等式基本性质的探索,培养学生观察、猜想、验证的能力.
情感目标:经历不等式基本性质的探索过程,初步体会不等式与等式的异同.
教学重、难点:
1、重点:掌握不等式的基本性质.
2、难点:不等式的基本性质2和3.
教学准备:
教师准备:课件.
教学设计过程:
一、创设情境,探究新知:
1、合作学习
(1)已知a<b和b<c,在数轴上表示如图5-9.
由数轴上a和c的位置关系,你能得出什么结论?你那举几个具体的例子说明吗?
(2)观察:用“”或“”填空,并找一找其中的规律.
①53,5+2____3+2,5-2____3-2;
②–13,-1+2____3+2,-1-3____3-3;
③6>2,6×5____2×5,6×(-5)____2×(-5);
④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6)
会发现:当不等式两边加或减去同一个数时,不等号的方向不变
当不等式的两边同乘同一个正数时,不等号的方向_不变;而乘同一个负数时,不等号的方向改变.
2、归纳
不等式的基本性质1若a<b和b<c,则a<c.
这个性质也叫做不等式的传递性.
不等式的基本性质2不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。
即
如果a>b,那么a+c>b+c,a-c>b-c;
如果a<b,那么a+c<b+c,a-c<b-c.
不等式的基本性质3不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.
即
如果a>b,且c>0,那么ac>bc,>;
如果a>b,且c<0,那么ac<bc,<;
3、做一做P104
4、试一试
(1)若-m5,则m___-5.
(2)如果x/y0那么xy___0.
(3)如果a-1,那么a-b___-1-b.
5、做一做P105
6、讲解例题
已知a<0,试比较2a与a的大小.
分析比较2a与a的大小,可以利用不等式的基本性质,也可以利用数轴,直接得出2a与a的大小.
二、巩固反思:
1、P106T1、T2“
2、探究活动
比较等式与不等式的基本性质.
例如,等式是否有与不等式的基本性质1类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比.(请与你的伙伴交流)
三、小结:
通过这节课的学习,你有哪些收获?
四、作业:
1、作业题P107
2、预习5.3
等式的基本性质集备教案
数学课时授课计划
授课时间:2012年月日执教者:
课题5.2等式的基本性质课时第1课时课型新授课教学设计者
教学
目标1.经历等式的基本性质的发现过程2。掌握等式的基本性质3。会利用等式的基本性质将等式变形3。会依据等式的基本性质将方程变形,求出方程的解
教学
重点等式的基本性质教学
难点本节例2
教学
方法讲练结合教学
用具
教学过程集体备课稿个案补充
一.利用书本图5-1和5-2发现等式的两个基本性质
等式的基本性质1等式的两边同时加上(或减去)同一个数或式,所得结果仍是等式若则
等式的基本性质2等式的两边同时乘或除以同一个数或式(除数不为0),所得结果仍是等式
二.会利用等式的基本性质将等式变形
1.书本117做一做
2.书本118课内练习1
3.课本117页例1
三.会依据等式的基本性质将方程变形,求出方程的解
1.书本118页例2
2.书本119页作业题3,4
教学
反思
改进
建议§17.2.2分式的基本性质
§17.2.2分式的基本性质
教学目标:
1.掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义.
2.使学生理解分式通分的意义,掌握分式通分的方法及步骤.
教学重点:
让学生知道约分、通分的依据和作用,学会分式约分与通分的方法.
教学难点:
1.分子、分母是多项式的分式约分;
2.几个分式最简公分母的确定.
教学过程:
1.分式的基本性质
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
用式子表示是:
(其中M是不等于零的整式).
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.
2.例3约分
(1);(2)
分析分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.
解(1)=-=-.(2)==.
约分后,分子与分母不再有公因式.分子与分母没有公因式称为最简分式.
3.练习:P5练习第1题:约分(1)(3)
4.例4通分
(1),;(2),;(3),
解(1)与的最简公分母为a2b2,所以
==,==.
(2)与的最简公分母为(x-y)(x+y),即x2-y2,所以
==,==.
请同学们根据这两小题的解法,完成第(3)小题.
5.练习P5练习第2题:通分
6.小结:(1)请你分别用数学语言和文字表述分式的基本性质;
(2)分式的约分运算,用到了哪些知识?
让学生发表,互相补充,归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”.
(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分.分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变.通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母.确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母.
7.作业:
8.课后反思:
文章来源:http://m.jab88.com/j/49536.html
更多