88教案网

每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“消元”,仅供参考,欢迎大家阅读。

一、创设情境,导入新课
七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).
进球数n012345
投进球的人数127●●2
同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?
二、师生互动,课堂探究
(一)指出问题,引发讨论
你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?
(经过学生思考、讨论、交流)
(二)导入知识,解释疑难
1.例题讲解(见P109)
分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷.
解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组
去括号,得
②-①,得11x=4.4
解这个方程,得x=0.4
把x=0.4代入①,得y=0.2
这个方程组的解是
答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.
2.上面解方程组的过程可以用下面的框图表示:
3.做一做
为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?
分析:如果1号电池和5号电池每节分别重x克,y克,则4克1号电池和5节5号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.
解:设1号电池每节重x克,5号电池每节重y克,根据题意可得
②×2-①,得y=20
把y=20代入②,得2x+3×20=240,x=90
所以这个方程组的解为
答:1号电池每节重90克,5号电池每节重20克.
4.练一练:P111练习第2、3题.
(三)归纳总结,知识回顾
这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.
作业:
1.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了
44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?
2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路?
参考答案
1.设王大析种了x亩茄子,y亩西红柿,根据题意得
解得
所以获纯利为10×2400+15×2600=63000元
2.旅游者一共走了20千米路.设平路长x千米,坡路长y千米,
依时间关系有=5,即(x+y)=5,2(x+y)=20.

延伸阅读

8.2消元(3)


8.2消元(3)
教学目标1、掌握用加减法解二元一次方程组;
2、使学生理解加减消元法所体现的“化未知为已知”的化归思想方法;
3、体验数学学习的乐趣,在探索过程中品尝成功的喜悦,树立学好数学的信心.
教学难点用“加减法“解二元一次方程组。
知识重点学会用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组。
教学过程(师生活动)设计理念
创设情境王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,梨每千克的售价是多少?比一比看谁求得快.
最简便的方法:抵消掉相同部分,王老师比李老师多买了1千克的梨,多花了2元,故梨每千克的售价为2元.问题解决过程中蕴含了朴素的加减消元的思想.反映出,科学的每一次进步,都可以在实
际的实戏活动中找到依据.
探究新知1、解方程组
(由学生自主探究,并给出不同的解法)
解法一由①得:x=y代人方程②,消去x.
解法二:把2x看作一个整体,由①得2z=-1-3y,代入方程②,消去2x.
肯定两解法正确,并由学生比较两种方法的优劣.解法二整体代入更简便,准确率更高.
有没有更简洁的解法呢?教师可做以下启发:
问题1.观察上述方程组,未知数z的系数有什么点?(相等)
问题2.除了代入消元,你还有别的办法消去x吗?
(两个方程的两边分别对应相减,就可消去x,得到一个一元一次方程.)
解法三:①-②得:8y=-8,所以y=-1
Y=-1代人①或②,得到x=1
所以原方程组的解为
2、变式一
启发:
问题1.观察上述方程组,未知数x的系数有什么特点?(互为相反数)
问题2.除了代人消元,你还有别的办法消去x吗?
(两个方程的两边分别对应相加,就可消去x,得到一个一元一次方程.)
解后反思:从上面的解答过程来看,对某些二元一次方程组可通过两个方程两边分别相加或相减,消去其中一个未知数,得到一个一元一次方程,从而求出它的解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.
想一想:能用加减消元法解二元一次方程组的前提是什么?
两个二元一次方程中同一未知数的系数相反或相等.
3、变式二:
观察:本例可以用加减消元法来做吗?
必要时作启发引导:
问题1.这两个方程直接相加减能消去未知数吗?为什么?
问题2.那么怎样使方程组中某一未知数系数的绝对值相等呢?
启发学生仔细观察方程组的结构特点,发现x的系数成整数倍数关系.
因此:②×2,得4x-10y=14③
由①-③即可消去x,从而使问题得解.
(追问:③-①可以吗?怎样更好?)
4、变式三:
想一想:本例题可以用加减消元法来做吗?
让学生独立思考,怎样变形才能使方程组中某一未知数系数的绝对值相等呢?
分析得出解题方法:
解法1:通过由①×3,②×2,使关于x的系数绝对值相等,从而可用加减法解得.
解法2:通过由①×5,②×3,使关于y的系数绝对值相等,从而可用加减法解得.
怎样更好呢?
通过对比,使学生自己总结出应选择方程组中同一未知数系数绝对值的最小公倍数较小的未知数消元.
解后反思:用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组时,把一个(或两个)方程的两边乘以适当的数,使两个方程中某一未知数的系数绝对值相等,从而化为第一类型方程组求解.

使学生进一步巩固用“代入法”解二元一次方程组,并在体会“代入法"存在不足的同时,感受用“加减法”解二元一次方程组的优越性,并掌握“加减法”.

变式的意义在于从“减“的情形自然地过渡到”加“的情形,浑然一体。

例题及变式一解决用了加减法解某一未知数的系数的绝对值相等的二元一次方程组的问题。

变式二解决用加减法解某一未知数的系数成整数倍数关系的二元一次方程组。

变式三的设置目的是引导学生学会用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组.这是本课的难点.通过三个变式,搭建了降低难度的阶梯.
巩固新知练习1:教科书第111页练习第1题
练习2:自行设计一些错题让学生判断。收集学生的易错点,让学业生在改错中,自我诊断。
小结与作业
小结提高回顾:用加减法解二元一次方程组的基本思想是什么?
这种方法的适用条件是什么?步骤又是怎样的?引导学生思考、交流、梳理所学知识,培养学生的理性思维能力和良好的口头表达能力.
布置作业6、做题:教科书112页习题8.2第3题。
7、选做题:教科书112页习题8.2第6题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
在学习加减法解题之前,学生们已经知道了代人法解二元一次方程组的核心是代人“消
元”,以使二元方程转化为一元方程求解.因此本节课例1的提出既是对代人法的复习,又是
加减法的探索.同时,也通过一题多解培养学生开放性思维.
解题方法应由学生自己去探索、发现,只有自己探索出来的,才是属于自己的,印象也就最深刻.本课设计没有直接告诉学生加减法解题的过程,而是通过引导学生观察不同方程组的结构特点,比较不同解法的优劣,自己探索发现解题的技巧.这样使学生在积极参与的学习中不仅能感受到学习的乐趣,更重要的是在这种积极求索的学习中,品尝到了成功的喜悦,促使其能力得到充分的发挥、提高.
思维发散,是培养创新思维的基础.透彻理解一个题,胜过盲目的多个演练题.本课设计采用变式教学,充分利用一道例题,由浅人深,不断地注人新元素,不时地给学生以新鲜感,避免了频繁地更换例题带给学生的枯燥与疲惫感,并且使整堂课节奏紧凑,一气呵成.的消元思想体现了数学学习中“化未知为已知”的化归思想方法,它是极重要的数学思想法.因此本课在练习结束后,都及时安排反思,加强化归思想的总结和提炼,这对于提高学生的能力,发展学生的思维极有好处.

8.2消元(1)


作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《8.2消元(1)》,供大家参考,希望能帮助到有需要的朋友。

8.2消元(1)
教学目标1、使学生学会用代人消元法解二元一次方程组;
2、理解代人消元法的基本思想体现的化未知为已知的化归思想方法;
3、逐步渗透矛盾转化的唯物主义思想.
教学难点代入消元法的基本思想。
知识重点用代入法解二元一次方程组。
教学过程(师生活动)设计理念
创设情境
引入课题播放学生篮球赛录像剪辑.
体育节要到了.篮球是初一(1)班的拳头项目.为了取得好名次,他们想在全部22场比赛中得到40分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么初一(1)班应该胜、负各几场?
你会用二元一次方程组解决这个问题吗?
根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程.
那么有哪些方法可以求得二元一次方程组的解呢?问题情境是学生喜闻乐见的体育活动,增强求知欲,对所学知识产生亲切感。
探究新知1、引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)
满足方程①的解有:
,,,,
满足方程②的解有:
,,,…
这两个方程的公共解是
2、师:这个问题能用一元一次方程来解决吗?
学生思考并列出式子.
设胜x场,负(22-x)场,解方程
2x+(22-x)=40③
解法略.
观察:上面的二元一次方程组和一元一次方程有什么关系?
若学生还是感到困难,教师可通过提问进一步引导.
(1)在一元一次方程解法中,列方程时所用的等量关系是什么?
(2)方程组中方程②所表示的等量关系是什么?
(3)方程②与③的等量关系相同,那么它们的区别在哪里?
(4)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?
结合学生的回答,教师做出讲解.
由方程①进行移项得y=22-x,
由于方程②中的y与方程①中的y都表示负的场数,故可以把方程②中的y用(22-劝来代换,
即得2x+(22-x)=40.由此一来,二元化为一元了.
解得x=18.
问题解完了吗?怎样求y
将x=18代入方程y=22-x,得y=4.
能代入原方程组中的方程①②来求y吗?代入哪个方程更简便?
这样,二元一次方程组的解是
归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.(板书课题)

可以采用观察与估算的方法.但很麻烦,故引发学生产生寻找新方法的需求.

以退为进的思想.

重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据.体会未知向已知,陌生向熟悉转化这一重要思想—化归思想.
巩固新知例1用代入法解方程组
本题较简单,直接由学生板演,师生共同评价.
解:把①代入②,得
3(y+3)-8y=14
所以y=-1
把y=-1代人①,得x=2.
所以
解后反思.教师引导学生思考下列问题:
(1)选择哪个方程代人另一方程?其目的是什么?
(2)为什么能代?
(3)只求出一个未知数的值,方程组解完了吗?
(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?
(5)怎样知道你运算的结果是否正确呢?
(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)
例2(为例1的变式)解方程组
分析:
(1)从方程的结构来看:例2与例1有什么不同?
例1是用x=y+3直接代人②的.而例2的两个方程都不具备这样的条件都不能直接代入另一条方程.
(2)如何变形?
把一个方程变形为用含x的式子表示y(或含y的式子表示x).
(3)那么选用哪个方程变形较简便呢?
通过观察,发现方程①中y的系数为-1,因此,可先将方程①变形,用含x的代数式表示y,再代入方程②求解.
解:由①得,y=,③
把③代人②,得(问:能否代入①中?)
3x-8()=14,
所以-x=-10,
x=10.
(问:本题解完了吗?把y=37代入哪个方程求x较简单?)
把x=10代入③,得
y=
所以y=2
所以
(本题可由一名学生口述,教师板书完成)例1改编自教材105页例
1,暂时省略了“用含一个未知数的式子去表示另一未知数”这一步骤,而2,将其放在例2中介绍,3,这样处理降低了难度,4,利于分阶段达成本课的知识目标5,.本例的重点在于让学生掌握代入法的基本步骤.

例2进一步巩固代入法的步骤.重点在于说明解二元一次方程组的一些技巧问题,主要表现在如何选择一个方程,如何用含一个未知数的式子去表示另一未知数.
小结与作业
小结提高合作交流:你从上面的学习中体会到代人法的基本思路是什么?主要步骤有哪些呢?与你的同伴交流.
学生畅所欲言,互相补充,小组派中心发言人进行总结发言.最后,由老师出示幻灯片.
代入法的实质是消元,使两个未知数转化为一个未知数一般步骤为:
①从方程组中选一个未知数系数比较简单的方程.将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=ax+b的形式;
②将y=ax+b代人方程组中的另一个方程中,消去y,得到关于二的一元一次方程;
③解这个一元一次方程,求出x的值;
④把求得的x值代人方程y=ax+b中,求出y的值,再写出方程组解的形式;
⑤检验得到的解是不是原方程组的解.这一步不是完全必要的,若能肯定解题无误,这一点可以省略。及时梳理知识,形成模—用代入法解二元一次方程一般步骤。
反馈练习1、教材105页1.(补充:再改写成用含y的式表示x)
2、教材105页练习2用代入法解方程组
3、教材107页3应用题

布置作业1、必做题:教科书111页习题8.2第1题,112页习题
2第2(1)(2)题.
2、选做题:教科书112页习题8.2第6题.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题.基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计.在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学.教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中.重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的.

8.2消元(一)


为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“8.2消元(一)”,仅供参考,欢迎大家阅读。

8.2消元(一)
教学目标:
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.
重点:
用代入消元法解二元一次方程组.
难点:
探索如何用代入法将“二元”转化为“一元”的消元过程.
教学过程:
复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?
解:设这个队胜x场,根据题意得
解得
x=18
则20-x=2
答:这个队胜18场,负2场.
新课:
在上述问题中,我们可以设出两个未知数,列出二元一次方程组,
设胜的场数是x,负的场数是y,
x+y=20
2x+y=38
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程
2x+y=38的y换为20-x,这个方程就化为一元一次方程.
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
例1把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3(2)3x+y-1=0
例2用代入法解方程组
x-y=3①
3x-8y=14②
例3根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
课堂练习:
教科书第107页2、3、4题
作业:
教科书第111页第1题
第112页第2题

文章来源:http://m.jab88.com/j/41703.html

更多

最新更新

更多